Explaining Preferences and Preferring Explanations

  • Pedro Cabalar
  • Jorge Fandiño
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9060)


In this paper we study the possibility of providing causal explanations for preferred answer sets, such as those obtained from logic programs with ordered disjunction (LPODs). We use a recently defined multi-valued semantics for answer sets based on a causal algebra and consider its direct application to LPODs by several illustrating examples. We also explain the limitations of this simple approach and enumerate some open topics to be explored in the future.


Logic Program Logic Programming Stable Model Causal Explanation Disjunctive Normal Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brewka, G.: Preferred subtheories: An extended logical framework for default reasoning. In: Proceedings of the 11th International Joint Conference on Artificial Intelligence, Detroit, MI, USA, pp. 1043–1048 (August 1989)Google Scholar
  2. 2.
    Brewka, G.: Reasoning about priorities in default logic. In: Proceedings of the 12th National Conference on Artificial Intelligence, Seattle, WA, USA, July 31-August 4, vol. 2, pp. 940–945 (1994)Google Scholar
  3. 3.
    Brewka, G.: Logic programming with ordered disjunction. In: Proceedings of the Eighteenth National Conference on Artificial Intelligence and Fourteenth Conference on Innovative Applications of Artificial Intelligence, Edmonton, Alberta, Canada, July 28-August 1, pp. 100–105 (2002)Google Scholar
  4. 4.
    Brewka, G., Eiter, T.: Preferred answer sets for extended logic programs. In: Proceedings of the Sixth International Conference on Principles of Knowledge Representation and Reasoning (KR 1998), Trento, Italy, June 2-5, pp. 86–97 (1998)Google Scholar
  5. 5.
    Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance. Commun. ACM 54(12), 92–103 (2011)CrossRefGoogle Scholar
  6. 6.
    Brewka, G., Niemelä, I., Syrjänen, T.: Logic programs with ordered disjunction. Computational Intelligence 20(2), 335–357 (2004)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Brewka, G., Niemelä, I., Truszczynski, M.: Preferences and nonmonotonic reasoning. AI Magazine 29(4), 69–78 (2008)Google Scholar
  8. 8.
    Cabalar, P.: A logical characterisation of ordered disjunction. AI Communications 24(2), 165–175 (2011)MathSciNetMATHGoogle Scholar
  9. 9.
    Cabalar, P., Fandinno, J., Fink, M.: Causal graph justifications of logic programs. Theory and Practice of Logic Programming 14(4-5), 603–618 (2014), Special issue on ICLP 2014Google Scholar
  10. 10.
    Cabalar, P., Fandinno, J., Fink, M.: A Complexity Assessment for Queries Involving Sufficient and Necessary Causes. In: Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS, vol. 8761, pp. 297–310. Springer, Heidelberg (2014)Google Scholar
  11. 11.
    Cabalar, P., Ferraris, P.: Propositional theories are strongly equivalent to logic programs. Theory and Practice of Logic Programming 7(6), 745–759 (2007)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Viegas Damásio, C., Analyti, A., Antoniou, G.: Justifications for logic programming. In: Cabalar, P., Son, T.C. (eds.) LPNMR 2013. LNCS, vol. 8148, pp. 530–542. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  13. 13.
    Denecker, M., De Schreye, D.: Justification semantics: A unifiying framework for the semantics of logic programs. In: Proc. of the Logic Programming and Nonmonotonic Reasoning Workshop, pp. 365–379 (1993)Google Scholar
  14. 14.
    Ferraris, P.: Answer sets for propositional theories. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 119–131. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Gebser, M., Pührer, J., Schaub, T., Tompits, H.: Meta-programming technique for debugging answer-set programs. In: Proc. of the 23rd Conf. on Artificial Inteligence (AAAI 2008), pp. 448–453 (2008)Google Scholar
  16. 16.
    Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski, R.A., Bowen, K.A. (eds.) Logic Programming: Proc. of the Fifth International Conference and Symposium, vol. 2, pp. 1070–1080. MIT Press, Cambridge (1988)Google Scholar
  17. 17.
    Heyting, A.: Die formalen Regeln der intuitionistischen Logik. Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse, pp. 42–56 (1930)Google Scholar
  18. 18.
    Inoue, K., Sakama, C.: Negation as failure in the head. Journal of Logic Programming 35(1), 39–78 (1998)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Janhunen, T.: On the Effect of Default Negation on the Expressiveness of Disjunctive Rules. In: Eiter, T., Faber, W., Truszczyński, M. (eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, pp. 93–106. Springer, Heidelberg (2001)Google Scholar
  20. 20.
    Lifschitz, V., Tang, L.R., Turner, H.: Nested expressions in logic programs. Annals of Mathematics in Artificial Intelligence 25(3-4), 369–389 (1999)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Marek, V., Truszczyński, M.: Stable models and an alternative logic programming paradigm, pp. 169–181. Springer (1999)Google Scholar
  22. 22.
    Niemelä, I.: Logic programs with stable model semantics as a constraint programming paradigm. Annals of Mathematics and Artificial Intelligence 25, 241–273 (1999)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Pearce, D.: A new logical characterisation of stable models and answer sets. In: Dix, J., Przymusinski, T.C., Moniz Pereira, L. (eds.) NMELP 1996. LNCS, vol. 1216, pp. 57–70. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  24. 24.
    Pereira, L.M., Aparício, J.N., Alferes, J.J.: Derivation procedures for extended stable models. In: Mylopoulos, J., Reiter, R. (eds.) Proceedings of the 12th International Joint Conference on Artificial Intelligence, pp. 863–869. Morgan Kaufmann (1991)Google Scholar
  25. 25.
    Pontelli, E., Son, T.C., El-Khatib, O.: Justifications for logic programs under answer set semantics. Theory and Practice of Logic Programming 9(1), 1–56 (2009)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Reiter, R.: A logic for default reasoning. Artif. Intell. 13(1-2), 81–132 (1980)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Schulz, C., Sergot, M., Toni, F.: Argumentation-based answer set justification. In: Proc. of the 11th Intl. Symposium on Logical Formalizations of Commonsense Reasoning, Commonsense 2013 (2013)Google Scholar
  28. 28.
    van Emden, M.H., Kowalski, R.A.: The semantics of predicate logic as a programming language. J. ACM 23(4), 733–742 (1976)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Vennekens, J.: Actual causation in cp-logic. TPLP 11(4-5), 647–662 (2011)MathSciNetMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Pedro Cabalar
    • 1
  • Jorge Fandiño
    • 1
  1. 1.Department of Computer ScienceUniversity of CorunnaSpain

Personalised recommendations