Asynchronous Multi-Context Systems

  • Stefan Ellmauthaler
  • Jörg Pührer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9060)


We present asynchronous multi-context systems (aMCSs), a framework for loosely coupling different knowledge representation formalisms that allows for online reasoning in a dynamic environment. An aMCS interacts with the outside world via input and output streams and may therefore react to a continuous flow of external information. In contrast to recent proposals, contexts in an aMCS communicate with each other in an asynchronous way which fits the needs of many application domains and is beneficial for scalability. The federal semantics of aMCSs renders our framework an integration approach rather than a knowledge representation formalism itself. We illustrate the introduced concepts by means of an example scenario dealing with rescue services. In addition, we compare aMCSs to reactive multi-context systems and describe how to simulate the latter with our novel approach.


MultiAgent System Input Stream Context Formalism Output Stream Output Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alferes, J.J., Brogi, A., Leite, J., Moniz Pereira, L.: Evolving logic programs. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 50–61. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Alvaro, P., Marczak, W.R., Conway, N., Hellerstein, J.M., Maier, D., Sears, R.: Dedalus: Datalog in time and space. In: Proc. Datalog 2.0., pp. 262–281 (2011)Google Scholar
  3. 3.
    Brewka, G., Eiter, T.: Equilibria in heterogeneous nonmonotonic multi-context systems. In: AAAI 2007, pp. 385–390 (2007)Google Scholar
  4. 4.
    Brewka, G., Eiter, T., Fink, M.: Nonmonotonic multi-context systems: A flexible approach for integrating heterogeneous knowledge sources. In: Balduccini, M., Son, T.C. (eds.) Logic Programming, Knowledge Representation, and Nonmonotonic Reasoning. LNCS, vol. 6565, pp. 233–258. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Brewka, G., Eiter, T., Fink, M., Weinzierl, A.: Managed multi-context systems. In: IJCAI 2011, pp. 786–791 (2011)Google Scholar
  6. 6.
    Brewka, G., Ellmauthaler, S., Pührer, J.: Multi-context systems for reactive reasoning in dynamic environments. In: Proc. ECAI 2014, pp. 159–164 (2014)Google Scholar
  7. 7.
    Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.: Logical Foundations of Peer-To-Peer Data Integration. In: Beeri, C., Deutsch, A. (eds.) Proc. PODS 2004, pp. 241–251. ACM (2004)Google Scholar
  8. 8.
    Cheng, F.L., Eiter, T., Robinson, N., Sattar, A., Wang, K.: Lpforget: A system of forgetting in answer set programming. In: Proc. AUSAI 2006, pp. 1101–1105 (2006)Google Scholar
  9. 9.
    Dispatch Magazine On-Line: Computer-Aided Dispatch Resources (2014),
  10. 10.
    Ellmauthaler, S.: Generalizing multi-context systems for reactive stream reasoning applications. In: Proc. ICCSW 2013, pp. 17–24 (2013)Google Scholar
  11. 11.
    Ellmauthaler, S., Pührer, J.: Asynchronous Multi-Context Systems. In: Proc. ReactKnow 2014, pp. 31–37 (2014)Google Scholar
  12. 12.
    Gebser, M., Grote, T., Kaminski, R., Obermeier, P., Sabuncu, O., Schaub, T.: Stream reasoning with answer set programming: Preliminary report. In: Proc. KR 2012 (2012)Google Scholar
  13. 13.
    Gonçalves, R., Knorr, M., Leite, J.: Evolving multi-context systems. In: Proc. ECAI 2014, pp. 375–380 (2014)Google Scholar
  14. 14.
    Lang, J., Marquis, P.: Reasoning under inconsistency: A forgetting-based approach. Artif. Intell. 174, 799–823 (2010)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Le-Phuoc, D., Parreira, J.X., Hauswirth, M.: Linked stream data processing. In: Proc. RW 2012, pp. 245–289 (2012)Google Scholar
  16. 16.
    Wooldridge, M.J.: An Introduction to MultiAgent Systems (2nd edn.). Wiley (2009)Google Scholar
  17. 17.
    Zaniolo, C.: Logical foundations of continuous query languages for data streams. In: Proc. Datalog 2.0., pp. 177–189 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Stefan Ellmauthaler
    • 1
  • Jörg Pührer
    • 1
  1. 1.Institute of Computer ScienceLeipzig UniversityGermany

Personalised recommendations