A Glimpse on Gerhard Brewka’s Contributions to Artificial Intelligence

  • Thomas Eiter
  • Hannes Strass
  • Mirosław Truszczyński
  • Stefan Woltran
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9060)

Abstract

Gerhard Brewka has made a remarkable impact on artificial intelligence, especially in the area of knowledge representation, through his ideas, collaborations and mentoring, always amazing those close to him with his ability to inspire. This short paper offers a glimpse into four areas of research where Gerd’s imprint has been particularly distinct, intertwined with personal recollections of the authors, and with comments on those of Gerd’s personal characteristics that make his research perspectives so appealing to others.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alchourrón, C., Gärdenfors, P., Makinson, D.: On the logic of theory change: Partial meet contraction and revision functions. Journal of Symbolic Logic 50, 510–530 (1985)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Baral, C.: Reasoning about actions: Non-deterministic effects, constraints, and qualification. In: Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence (IJCAI), pp. 2017–2023. Morgan Kaufmann (1995)Google Scholar
  3. 3.
    Baumann, R., Brewka, G.: Expanding argumentation frameworks: Enforcing and monotonicity results. In: Baroni, P., Cerutti, F., Giacomin, M., Simari, G.R. (eds.) Proceedings of the 3rd Conference on Computational Models of Argument (COMMA 2010). Frontiers in Artificial Intelligence and Applications, vol. 216, pp. 75–86. IOS Press (2010)Google Scholar
  4. 4.
    Baumann, R., Brewka, G., Dvořák, W., Woltran, S.: Parameterized splitting: A simple modification-based approach. In: Erdem, E., Lee, J., Lierler, Y., Pearce, D. (eds.) Correct Reasoning. LNCS, vol. 7265, pp. 57–71. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Baumann, R., Brewka, G., Strass, H., Thielscher, M., Zaslawski, V.: State defaults and ramifications in the unifying action calculus. In: Lin, F., Sattler, U., Truszczyński, M. (eds.) Proceedings of the 12th International Conference on Principles of Knowledge Representation and Reasoning (KR 2010), pp. 435–444. AAAI Press (2010)Google Scholar
  6. 6.
    Baumann, R., Brewka, G., Wong, R.: Splitting argumentation frameworks: An empirical evaluation. In: Modgil, S., Oren, N., Toni, F. (eds.) TAFA 2011. LNCS, vol. 7132, pp. 17–31. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Bench-Capon, T.J.M., Dunne, P.E.: Argumentation in AI and Law: Editors’ Introduction. Artif. Intell. Law 13(1), 1–8 (2005)CrossRefGoogle Scholar
  8. 8.
    Bench-Capon, T.J.M., Dunne, P.E.: Argumentation in Artificial Intelligence. Artificial Intelligence 171(10-15), 619–641 (2007)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Boutilier, C., Brafman, R., Domshlak, C., Hoos, H., Poole, D.: CP-nets: A tool for representing and reasoning with conditional ceteris paribus preference statements. Journal of Artificial Intelligence Research 21, 135–191 (2003)MathSciNetMATHGoogle Scholar
  10. 10.
    Brewka, G.: Tweety - still flying: Some remarks on abnormal birds applicable rules and a default prover. In: Kehler, T. (ed.) Proceedings of the 5th National Conference on Artificial Intelligence, Philadelphia, pp. 8–12. Morgan Kaufmann (1986)Google Scholar
  11. 11.
    Brewka, G.: The logic of inheritance in frame systems. In: McDermott, J.P. (ed.) Proceedings of the 10th International Joint Conference on Artificial Intelligence, pp. 483–488. Morgan Kaufmann (1987)Google Scholar
  12. 12.
    Brewka, G.: Preferred subtheories: An extended logical framework for default reasoning. In: Sridharan, N.S. (ed.) Proceedings of the 11th International Joint Conference on Artificial Intelligence, IJCAI 1989, pp. 1043–1048. Morgan Kaufmann (1989)Google Scholar
  13. 13.
    Brewka, G.: Cumulative default logic: In defense of nonmonotonic inference rules. Artificial Intelligence 50(2), 183–205 (1991)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Brewka, G.: Nonmonotonic Reasoning: Logical Foundations of Commonsense. Cambridge Tracts in Theoretical Computer Science, vol. 12, Cambridge Univ. Press (1991)Google Scholar
  15. 15.
    Brewka, G.: An abductive framework for generalized logic programs. In: Pereira, L.M., Nerode, A. (eds.) Proceedings of the Second International Workshop on Logic Programming and Non-monotonic Reasoning, pp. 349–564. MIT Press (1993)Google Scholar
  16. 16.
    Brewka, G.: Adding priorities and specificity to default logic. In: MacNish, C., Moniz Pereira, L., Pearce, D.J. (eds.) JELIA 1994. LNCS, vol. 838, pp. 247–260. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  17. 17.
    Brewka, G.: Reasoning about priorities in default logic. In: AAAI 1994: Proceedings of the Twelfth National Conference on Artificial Intelligence, vol. 2, pp. 940–945. American Association for Artificial Intelligence (1994)Google Scholar
  18. 18.
    Brewka, G.: A reconstruction of Rescher’ s Theory of Formal Disputation based on default logic. In: Cohn, A.G. (ed.) Proceedings of the Eleventh European Conference on Artificial Intelligence, pp. 366–370 (1994)Google Scholar
  19. 19.
    Brewka, G.: Well-founded semantics for extended logic programs with dynamic preferences. Journal of Artificial Intelligence Research 4, 19–36 (1996)MathSciNetMATHGoogle Scholar
  20. 20.
    Brewka, G.: Dynamic argument systems: A formal model of argumentation processes based on situation calculus. Journal of Logic and Computation 11(2), 257–282 (2001)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Brewka, G.: Logic programming with ordered disjunction. In: Dechter, R., Sutton, R.S. (eds.) Proceedings of the 18th National Conference on Artificial Intelligence and the 14th Conference on Innovative Applications of Artificial Intelligence, AAAI/IAAI-2002, pp. 100–105. AAAI Press (2002)Google Scholar
  22. 22.
    Brewka, G.: Complex preferences for answer set optimization. In: Dubois, D., Welty, C.A., Williams, M.-A. (eds.) Proceedings of the 9th International Conference on Principles of Knowledge Representation and Reasoning, KR-2004, pp. 213–223. AAAI Press (2004)Google Scholar
  23. 23.
    Brewka, G.: A rank based description language for qualitative preferences. In: de Mántaras, R.L., Saitta, L. (eds.) Proceedings of the 16th Eureopean Conference on Artificial Intelligence, ECAI-2004, pp. 303–307. IOS Press (2004)Google Scholar
  24. 24.
    Brewka, G.: Nonmonotonic tools for argumentation. In: Janhunen, T., Niemelä, I. (eds.) JELIA 2010. LNCS, vol. 6341, pp. 1–6. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  25. 25.
    Brewka, G.: Towards reactive multi-context systems. In: Cabalar, P., Son, T.C. (eds.) LPNMR 2013. LNCS, vol. 8148, pp. 1–10. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  26. 26.
    Brewka, G., Benferhat, S., Le Berre, D.: Qualitative choice logic. Artificial Intelligence 157(1-2), 203–237 (2004)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Brewka, G., Dunne, P.E., Woltran, S.: Relating the Semantics of Abstract Dialectical Frameworks and Standard AFs. In: Walsh, T. (ed.) Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI 2011), pp. 780–785. AAAI Press (2011)Google Scholar
  28. 28.
    Brewka, G., Eiter, T.: Preferred answer sets for extended logic programs. Artificial Intelligence 109(1-2), 297–356 (1999)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Brewka, G., Eiter, T.: Prioritizing default logic. In: Hölldobler, S. (ed.) Intellectics and Computational Logic (to Wolfgang Bibel on the occasion of his 60th birthday). Applied Logic Series, vol. 19, pp. 27–45. Kluwer (2000)Google Scholar
  30. 30.
    Brewka, G., Eiter, T.: Equilibria in heterogeneous nonmonotonic multi-context systems. In: Proceedings of the Twenty-Second AAAI Conference on Artificial Intelligence, pp. 385–390. AAAI Press (2007)Google Scholar
  31. 31.
    Brewka, G., Eiter, T.: Argumentation context systems: A framework for abstract group argumentation. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 44–57. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  32. 32.
    Brewka, G., Eiter, T., Fink, M.: Nonmonotonic multi-context systems: A flexible approach for integrating heterogeneous knowledge sources. In: Balduccini, M., Son, T.C. (eds.) Logic Programming, Knowledge Representation, and Nonmonotonic Reasoning. LNCS, vol. 6565, pp. 233–258. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  33. 33.
    Brewka, G., Eiter, T., Fink, M., Weinzierl, A.: Managed multi-context systems. In: Walsh, T. (ed.) Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI 2011), pp. 786–791. AAAI Press (2011)Google Scholar
  34. 34.
    Brewka, G., Ellmauthaler, S., Strass, H., Wallner, J.P., Woltran, S.: Abstract dialectical frameworks revisited. In: Rossi, F. (ed.) Proceedings of the 23rd International Joint Conference on Artificial Intelligence (IJCAI 2013), pp. 803–809. IJCAI/AAAI (2013)Google Scholar
  35. 35.
    Brewka, G., Gordon, T.F.: Carneades and abstract dialectical frameworks: A reconstruction. In: Baroni, P., Cerutti, F., Giacomin, M., Simari, G.R. (eds.) Proceedings of the 3rd Conference on Computational Models of Argument (COMMA 2010). Frontiers in Artificial Intelligence and Applications, vol. 216, pp. 3–12. IOS Press (2010)Google Scholar
  36. 36.
    Brewka, G., Gottlob, G.: Well-founded semantics for default logic. Fundam. Inform. 31(3/4), 221–236 (1997)MathSciNetMATHGoogle Scholar
  37. 37.
    Brewka, G., Hertzberg, J.: How to do things with worlds: On formalizing actions and plans. Journal of Logic and Computation 3(5), 517–532 (1993)MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Brewka, G., Konolige, K.: An abductive framework for general logic programs and other nonmonotonic systems. In: Bajcsy, R. (ed.) Proceedings of the 13th International Joint Conference on Artificial Intelligence, pp. 9–17. Morgan Kaufmann (1993)Google Scholar
  39. 39.
    Brewka, G., Niemelä, I., Syrjänen, T.: Logic programs with ordered disjunction. Computational Intelligence 20(2), 335–357 (2004)MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    Brewka, G., Niemelä, I., Truszczynski, M.: Answer set optimization. In: Gottlob, G., Walsh, T. (eds.) Proceedings of the 18th International Joint Conference on Artificial Intelligence, IJCAI-2003, pp. 867–872. Morgan Kaufmann (2003)Google Scholar
  41. 41.
    Brewka, G., Niemelä, I., Truszczynski, M.: Prioritized component systems. In: Veloso, M.M., Kambhampati, S. (eds.) Proceedings of the 20th National Conference on Artificial Intelligence and the 17th Conference on Innovative Applications of Artificial Intelligence, AAAI/IAAI-2005, pp. 596–601. AAAI Press (2005)Google Scholar
  42. 42.
    Brewka, G., Polberg, S., Woltran, S.: Generalizations of dung frameworks and their role in formal argumentation. IEEE Intelligent Systems 29(1), 30–38 (2014)CrossRefGoogle Scholar
  43. 43.
    Brewka, G., Prakken, H., Vreeswijk, G.: Special issue on computational dialectics: an introduction. Journal of Logic and Computation 13(3), 317–318 (2003)CrossRefGoogle Scholar
  44. 44.
    Brewka, G., Roelofsen, F., Serafini, L.: Contextual default reasoning. In: Veloso, M.M. (ed.) IJCAI 2007, Proceedings of the 20th International Joint Conference on Artificial Intelligence, pp. 268–273 (2007)Google Scholar
  45. 45.
    Brewka, G., Truszczynski, M., Woltran, S.: Representing preferences among sets. In: Fox, M., Poole, D. (eds.) Proceedings of the 24th AAAI Conference on Artificial Intelligence, AAAI-2010, pp. 273–278. AAAI Press (2010)Google Scholar
  46. 46.
    Brewka, G., Woltran, S.: Abstract dialectical frameworks. In: Lin, F., Sattler, U., Truszczyński, M. (eds.) Proceedings of the 12th International Conference on Principles of Knowledge Representation and Reasoning (KR 2010), pp. 780–785. AAAI Press (2010)Google Scholar
  47. 47.
    Brewka, G., Woltran, S.: GRAPPA: A semantical framework for graph-based argument processing. In: Schaub, T., Friedrich, G., O’Sullivan, B. (eds.) ECAI 2014 - 21st European Conference on Artificial Intelligence. Frontiers in Artificial Intelligence and Applications, vol. 263, pp. 153–158. IOS Press (2014)Google Scholar
  48. 48.
    Denecker, M., Marek, V.W., Truszczyński, M.: Ultimate approximation and its application in nonmonotonic knowledge representation systems. Inf. Comput. 192(1), 84–121 (2004)MathSciNetMATHCrossRefGoogle Scholar
  49. 49.
    Diller, M., Wallner, J.P., Woltran, S.: Reasoning in abstract dialectical frameworks using quantified boolean formulas. In: Parsons, S., Oren, N., Reed, C., Cerutti, F. (eds.) Computational Models of Argument - Proceedings of COMMA 2014. Frontiers in Artificial Intelligence and Applications, vol. 266, pp. 241–252. IOS Press (2014)Google Scholar
  50. 50.
    Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artificial Intelligence 77(2), 321–358 (1995)MathSciNetMATHCrossRefGoogle Scholar
  51. 51.
    Ellmauthaler, S., Strass, H.: The diamond system for argumentation: Preliminary report. CoRR, abs/1312.6140 (2013)Google Scholar
  52. 52.
    Ellmauthaler, S., Strass, H.: The DIAMOND system for computing with abstract dialectical frameworks. In: Parsons, S., Oren, N., Reed, C., Cerutti, F. (eds.) Computational Models of Argument - Proceedings of COMMA 2014. Frontiers in Artificial Intelligence and Applications, vol. 266, pp. 233–240. IOS Press (2014)Google Scholar
  53. 53.
    Ellmauthaler, S., Wallner, J.P.: Evaluating abstract dialectical frameworks with asp. In: Verheij, B., Szeider, S., Woltran, S. (eds.) Computational Models of Argument - Proceedings of COMMA 2012. Frontiers in Artificial Intelligence and Applications, vol. 245, pp. 505–506. IOS Press (2012)Google Scholar
  54. 54.
    Gaggl, S.A., Strass, H.: Decomposing Abstract Dialectical Frameworks. In: Parsons, S., Oren, N., Reed, C., Cerutti, F. (eds.) Computational Models of Argument - Proceedings of COMMA 2014. Frontiers in Artificial Intelligence and Applications, vol. 266, pp. 281–292. IOS Press (2014)Google Scholar
  55. 55.
    Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Generation Computing 9, 365–385 (1991)MATHCrossRefGoogle Scholar
  56. 56.
    Ghidini, C., Giunchiglia, F.: Local models semantics, or contextual reasoning = locality + compatibility. Artificial Intelligence 127(2), 221–259 (2001)MathSciNetMATHCrossRefGoogle Scholar
  57. 57.
    Ginsberg, M.L., Smith, D.E.: Reasoning about action I: A possible worlds approach. Artificial Intelligence 35, 233–258 (1987)MathSciNetGoogle Scholar
  58. 58.
    Giunchiglia, F., Serafini, L.: Multilanguage hierarchical logics or: How we can do without modal logics. Artificial Intelligence 65(1), 29–70 (1994)MathSciNetMATHCrossRefGoogle Scholar
  59. 59.
    Goncalves, R., Knorr, M., Leite, J.: Evolving multi-context systems. In: Schaub, T., Friedrich, G., O’Sullivan, B. (eds.) Proceedings of the 21st Eureopean Conference on Artificial Intelligence, ECAI 2014. Frontiers in Artificial Intelligence and Applications, vol. 263, pp. 225–230. IOS Press (2014)Google Scholar
  60. 60.
    Gottlob, G.: Translating default logic into standard autoepistemic logic. J. ACM 42(4), 711–740 (1995)MathSciNetMATHCrossRefGoogle Scholar
  61. 61.
    Junker, U., Brewka, G.: Handling partially ordered defaults in TMS. In: Kruse, R., Siegel, P. (eds.) ECSQAU 1991 and ECSQARU 1991. LNCS, vol. 548, pp. 211–218. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  62. 62.
    Kartha, G.N.: Two counterexamples related to Baker’s approach to the frame problem. Artificial Intelligence 69(1-2), 379–391 (1994)MathSciNetMATHCrossRefGoogle Scholar
  63. 63.
    Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and cumulative logics. Artificial Intelligence 44, 167–207 (1990)MathSciNetMATHCrossRefGoogle Scholar
  64. 64.
    Lehmann, D., Magidor, M.: What does a conditional knowledge base entail? Artificial Intelligence 55, 1–60 (1992)MathSciNetMATHCrossRefGoogle Scholar
  65. 65.
    Linsbichler, T.: Splitting abstract dialectical frameworks. In: Parsons, S., Oren, N., Reed, C., Cerutti, F. (eds.) Computational Models of Argument - Proceedings of COMMA 2014. Frontiers in Artificial Intelligence and Applications, vol. 266, pp. 357–368. IOS Press (2014)Google Scholar
  66. 66.
    Lukaszewicz, W.: Non-Monotonic Reasoning - Formalization of Commonsense Reasoning. Ellis Horwood (1990)Google Scholar
  67. 67.
    McCain, N., Turner, H.: A causal theory of ramifications and qualifications. In: Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence (IJCAI), pp. 1978–1984. Morgan Kaufmann (1995)Google Scholar
  68. 68.
    McCarthy, J.: Circumscription — a form of non-monotonic reasoning. Artificial Intelligence 13(1-2), 27–39 (1980)MathSciNetMATHCrossRefGoogle Scholar
  69. 69.
    McCarthy, J.: Notes on formalizing context. In: Bajcsy, R. (ed.) Proceedings of the 13th International Joint Conference on Artificial Intelligence, pp. 555–562. Morgan Kaufmann (1993)Google Scholar
  70. 70.
    McDermott, D., Doyle, J.: Non-monotonic logic I. Artificial Intelligence 13, 41–72 (1980)MathSciNetMATHCrossRefGoogle Scholar
  71. 71.
    Moore, R.: Semantical considerations on nonmonotonic logics. Artificial Intelligence 25, 75–94 (1985)MathSciNetMATHCrossRefGoogle Scholar
  72. 72.
    Pearl, J.: System Z: A natural ordering of defaults with tractable applications to nonmonotonic reasoning. In: Proceedings of the 3rd Conference on Theoretical Aspects of Reasoning about Knowledge, TARK 1990, pp. 121–135. Morgan Kaufmann (1990)Google Scholar
  73. 73.
    Polberg, S.: Extension-based semantics of abstract dialectical frameworks. CoRR, abs/1405.0406 (2014)Google Scholar
  74. 74.
    Polberg, S., Doder, D.: Probabilistic abstract dialectical frameworks. In: Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS, vol. 8761, pp. 591–599. Springer, Heidelberg (2014)Google Scholar
  75. 75.
    Poole, D.: A logical framework for default reasoning. Artificial Intelligence 36(1), 27–47 (1988)MathSciNetMATHCrossRefGoogle Scholar
  76. 76.
    Reiter, R.: A logic for default reasoning. Artificial Intelligence 13(1-2), 81–132 (1980)MathSciNetMATHCrossRefGoogle Scholar
  77. 77.
    Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical Systems. The MIT Press (2001)Google Scholar
  78. 78.
    Shapiro, S., Brewka, G.: Dynamic interactions between goals and beliefs. In: IJCAI 2007: Proceedings of the 20th International Joint Conference on Artifical intelligence, pp. 2625–2630. Morgan Kaufmann Publishers Inc. (2007)Google Scholar
  79. 79.
    Šimko, A.: Logic Programming with Preferences on Rules. PhD thesis, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Slovakia (2014)Google Scholar
  80. 80.
    Strass, H.: Approximating operators and semantics for abstract dialectical frameworks. Artificial Intelligence 205, 39–70 (2013)MathSciNetMATHCrossRefGoogle Scholar
  81. 81.
    Strass, H.: Instantiating Knowledge Bases in Abstract Dialectical Frameworks. In: Leite, J., Son, T.C., Torroni, P., van der Torre, L., Woltran, S. (eds.) CLIMA XIV 2013. LNCS, vol. 8143, pp. 86–101. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  82. 82.
    Strass, H.: On the relative expressiveness of argumentation frameworks, normal logic programs and abstract dialectical frameworks. In: Konieczny, S., Tompits, H. (eds.) Proceedings of the Fifteenth International Workshop on Non-Monotonic Reasoning (NMR) (2014)Google Scholar
  83. 83.
    Strass, H., Wallner, J.P.: Analyzing the Computational Complexity of Abstract Dialectical Frameworks via Approximation Fixpoint Theory. In: Proceedings of the Fourteenth International Conference on the Principles of Knowledge Representation and Reasoning (KR), pp. 101–110. AAAI Press (2014)Google Scholar
  84. 84.
    Tasharrofi, S., Ternovska, E.: Generalized multi-context systems. In: Baral, C., Giacomo, G.D., Eiter, T. (eds.) Proceedings of the Fourteenth International Conference on the Principles of Knowledge Representation and Reasoning (KR), pp. 368–377. AAAI Press (2014)Google Scholar
  85. 85.
    Thielscher, M.: Ramification and causality. Artificial Intelligence 89(1-2), 317–364 (1997)MathSciNetMATHCrossRefGoogle Scholar
  86. 86.
    Winslett, M.: Reasoning about action using a possible models approach. In: Proceedings of the Seventh National Conference on Artificial Intelligence (AAAI 1988), pp. 89–93 (1988)Google Scholar
  87. 87.
    Witteveen, C., Brewka, G.: Skeptical reason maintenance and belief revision. Artificial Intelligence 61(1), 1–36 (1993)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Thomas Eiter
    • 1
  • Hannes Strass
    • 2
  • Mirosław Truszczyński
    • 3
  • Stefan Woltran
    • 4
  1. 1.Knowledge-Based Systems GroupVienna University of TechnologyViennaAustria
  2. 2.Computer Science InstituteLeipzig UniversityLeipzigGermany
  3. 3.Department of Computer ScienceUniversity of KentuckyLexingtonUSA
  4. 4.Database and Artificial Intelligence GroupVienna University of TechnologyViennaAustria

Personalised recommendations