Das, B., Chen, C., Dasgupta, N., Cook, D.J., Seelye, A.M.: Automated prompting in a smart home environment. In: Proceedings of the 2010 IEEE International Conference on Data Mining Workshops (ICDMW ’10), pp. 1045–1052 (2010)
Google Scholar
Das, B., Cook, D.J., Schmitter-Edgecombe, M., Seelye, A.M.: PUCK: an automated prompting system for smart environments: toward achieving automAted Prompting-challenges Involved. Pers. Ubiquitous Comput. 16(7), 859–873 (2012)
CrossRef
Google Scholar
Monreale, A., Pinelli, F., Trasarti, R., Giannotti, F.: WhereNext: a location predictor on trajectory pattern mining. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’09), pp. 637–646 (2009)
Google Scholar
Krumm, J., Horvitz, E.: Predestination: inferring destinations from partial trajectories. In: Dourish, P., Friday, A. (eds.) UbiComp 2006. LNCS, vol. 4206, pp. 243–260. Springer, Heidelberg (2006)
CrossRef
Google Scholar
Song, L., Deshpande, U., Kozat, U., Kotz, D., Jain, R.: Predictability of WLAN mobility and its effects on bandwidth provisioning. In: Proceedings of the 25th IEEE International Conference on Computer Communications (INFOCOM ’06), pp. 1–13 (2006)
Google Scholar
Haddadi, H., Hui, P., Brown, I.: MobiAd: private and scalable mobile advertising. In: Proceedings of the Fifth ACM International Workshop on Mobility in the Evolving Internet Architecture (MobiArch ’10), pp. 33–38 (2010)
Google Scholar
Yu, S.I., Yang, Y., Hauptmann, A.: Harry Potter’s Marauder’s Map: localizing and tracking multiple persons-of-interest by nonnegative discretization. In: Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR ’13), pp. 3714–3720 (2013)
Google Scholar
Roth, S.: Discrete-continuous optimization for multi-target tracking. In: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR ’12), pp. 1926–1933 (2012)
Google Scholar
Beleznai, C., Schreiber, D., Rauter, M.: Pedestrian detection using GPU-accelerated multiple cue computation. In: Computer Vision and Pattern Recognition Workshops (CVPRW ’11), pp. 58–65 (2011)
Google Scholar
Gonzalez, M.C., Hidalgo, C.A., Barabasi, A.L.: Understanding individual human mobility patterns. Nature 453(7196), 779–782 (2008)
CrossRef
Google Scholar
Song, C., Qu, Z., Blumm, N., Barabási, A.L.: Limits of predictability in human mobility. Science 327(5968), 1018–1021 (2010)
CrossRef
MATH
MathSciNet
Google Scholar
Scellato, S., Musolesi, M., Mascolo, C., Latora, V., Campbell, A.T.: NextPlace: a spatio-temporal prediction framework for pervasive systems. In: Lyons, K., Hightower, J., Huang, E.M. (eds.) Pervasive 2011. LNCS, vol. 6696, pp. 152–169. Springer, Heidelberg (2011)
CrossRef
Google Scholar
Baeg, M., Park, J.H., Koh, J., Park, K.W., Baeg, M.H.: Building a smart home environment for service robots based on RFID and sensor networks. In: International Conference on Control, Automation and Systems (ICCAS ’07), pp. 1078–1082 (2007)
Google Scholar
Hussain, S., Schaffner, S., Moseychuck, D.: Applications of wireless sensor networks and RFID in a smart home environment. In: Proceedings of the 2009 Seventh Annual Communication Networks and Services Research Conference (CNSR ’09), pp. 153–157 (2009)
Google Scholar
Pei, J., Pinto, H., Chen, Q., Han, J., Mortazavi-Asl, B., Dayal, U., Hsu, M.C.: PrefixSpan: mining sequential patterns efficiently by prefix-projected pattern growth. In: Proceedings of the 17th International Conference on Data Engineering (ICDE ’01), pp. 215–224 (2001)
Google Scholar
Fano, R.M.: Transmission of information: a statistical theory of communications. Am. J. Phys. 29, 793–794 (1961)
CrossRef
Google Scholar
Navet, N., Chen, S.H.: On predictability and profitability: Would gp induced trading rules be sensitive to the observed entropy of time series? In: Brabazon, A., O’Neill, M. (eds.) Natural Computing in Computational Finance. SCI, vol. 100, pp. 197–210. Springer, Heidelberg (2008)
CrossRef
Google Scholar
Sadilek, A., Krumm, J.: Far out: predicting long-term human mobility. In: Proceedings of the 26th AAAI Conference on Artificial Intelligence (AAAI ’12) (2012)
Google Scholar
Hamming, R.W.: Error detecting and error correcting codes. Bell Syst. Tech. J. 29(2), 147–160 (1950)
CrossRef
MathSciNet
Google Scholar
MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297 (1967)
Google Scholar
Ferris, B., Fox, D., Lawrence, N.D.: Wifi-slam using gaussian process latent variable models. In: IJCAI, vol. 7, pp. 2480–2485 (2007)
Google Scholar
Ferris, B., Haehnel, D., Fox, D.: Gaussian processes for signal strength-based location estimation. In: Proceedings of Robotics Science and Systems, Citeseer (2006)
Google Scholar
Pu, Q., Gupta, S., Gollakota, S., Patel, S.: Whole-home gesture recognition using wireless signals. In: Proceedings of the 19th annual international conference on Mobile computing & networking, pp. 27–38, ACM (2013)
Google Scholar
Cielniak, G., Bennewitz, M., Burgard, W.: Where is...? learning and utilizing motion patterns of persons with mobile robots. In: IJCAI, pp. 909–914 (2003)
Google Scholar
Nguyen, N., Venkatesh, S., Bui, H.: Recognising behaviours of multiple people with hierarchical probabilistic model and statistical data association. In: BMVC 2006: Proceedings of the 17th British Machine Vision Conference, British Machine Vision Association, pp. 1239–1248 (2006)
Google Scholar