Discovery of Tampered Image with Robust Hashing

  • Zhenjun Tang
  • Junwei Yu
  • Xianquan Zhang
  • Shichao Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8933)


Tampered image discovery from similar images is a challenging problem of multimedia security. Aiming at this issue, we propose a robust image hashing with invariant moments. Specifically, the proposed hashing firstly converts the input image into a normalized image by interpolation, filtering and color space conversion. Then it divides the normalized image into overlapping blocks and extracts invariant moments of blocks to form a feature matrix. Finally, the feature matrix is compressed to make a short hash. Hash similarity is determined by measuring similarity between hash segments with correlation coefficient. Experimental results indicate that our hashing is robust against normal digital operations and can efficiently distinguish tampered images from similar images. Comparisons show that our hashing is better than some notable hashing algorithms in classification performances between robustness and content sensitivity.


Robust hashing image hashing invariant moment tampering discovery 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zhu, X., Zhang, L., Huang, Z.: A sparse embedding and least variance encoding approach to hashing. IEEE Transactions on Image Processing 23, 3737–3750 (2014)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Ahmed, F., Siyal, M.Y., Abbas, V.U.: A secure and robust hash-based scheme for image authentication. Signal Processing 90, 1456–1470 (2010)CrossRefzbMATHGoogle Scholar
  3. 3.
    Winter, C., Steinebach, M., Yannikos, Y.: Fast indexing strategies for robust image hashes. Digital Investigation 11, S27–S35 (2014)Google Scholar
  4. 4.
    Fridrich, J., Goljan, M.: Robust hash functions for digital watermarking. In: IEEE International Conference on Information Technology: Coding and Computing, pp. 178–183. IEEE Press, New York (2000)Google Scholar
  5. 5.
    Tang, Z., Wang, S., Zhang, X., Wei, W., Su, S.: Robust image hashing for tamper detection using non-negative matrix factorization. Journal of Ubiquitous Convergence and Technology 2, 18–26 (2008)Google Scholar
  6. 6.
    Lv, X., Wang, Z.J.: Reduced-reference image quality assessment based on perceptual image hashing. In: IEEE International Conference on Image Processing, pp. 4361–4364. IEEE Press, New York (2009)Google Scholar
  7. 7.
    Lu, W., Wu, M.: Multimedia forensic hash based on visual words. In: IEEE International Conference on Image Processing, pp. 989–992. IEEE Press, New York (2010)Google Scholar
  8. 8.
    Zhu, X., Huang, Z., Cheng, H., Cui, J., Shen, H.: Sparse hashing for fast multimedia search. ACM Transactions on Information Systems 31, 9 (2013)CrossRefGoogle Scholar
  9. 9.
    Zhu, X., Huang, Z., Cheng, H., Shen, H., Zhao, X.: Linear cross-modal hashing for efficient multimedia search. In: the 21st ACM International Conference on Multimedia, pp. 143–152. ACM, New York (2013)CrossRefGoogle Scholar
  10. 10.
    Tang, Z., Dai, Y., Zhang, X., Zhang, S.: Perceptual image hashing with histogram of color vector angles. In: Huang, R., Ghorbani, A.A., Pasi, G., Yamaguchi, T., Yen, N.Y., Jin, B. (eds.) AMT 2012. LNCS, vol. 7669, pp. 237–246. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Tang, Z., Wang, S., Zhang, X., Wei, W.: Structural feature-based image hashing and similarity metric for tampering detection. Fundamenta Informaticae 106, 75–91 (2011)MathSciNetGoogle Scholar
  12. 12.
    Venkatesan, R., Koon, S.-M., Jakubowski, M.H., Moulin, P.: Robust image hashing.. In: IEEE International Conference on Image Processing, pp. 664–666. IEEE Press, New York (2000)Google Scholar
  13. 13.
    Lin, C.Y., Chang, S.F.: A robust image authentication system distinguishing JPEG compression from malicious manipulation. IEEE Transactions on Circuits System and Video Technology 11, 153–168 (2001)CrossRefGoogle Scholar
  14. 14.
    Swaminathan, A., Mao, Y., Wu, M.: Robust and secure image hashing. IEEE Transactions on Information Forensics and Security 1, 215–230 (2006)CrossRefGoogle Scholar
  15. 15.
    Monga, V., Mihcak, M.K.: Robust and secure image hashing via non-negative matrix factorizations. IEEE Transactions on Information Forensics and Security 2, 376–390 (2007)CrossRefGoogle Scholar
  16. 16.
    Ou, Y., Rhee, K.H.: A key-dependent secure image hashing scheme by using Radon transform. In: IEEE International Symposium on Intelligent Signal Processing and Communication Systems, pp. 595–598. IEEE Press, New York (2009)Google Scholar
  17. 17.
    Kang, L., Lu, C., Hsu, C.: Compressive sensing-based image hashing. In: IEEE International Conference on Image Processing, pp. 1285–1288. IEEE Press, New York (2009)Google Scholar
  18. 18.
    Li, Y., Lu, Z., Zhu, C., Niu, X.: Robust image hashing based on random Gabor filtering and dithered lattice vector quantization. IEEE Transactions on Image Processing 21, 1963–1980 (2012)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Tang, Z., Dai, Y., Zhang, X.: Perceptual hashing for color images using invariant moments. Applied Mathematics & Information Sciences 6, 643S–650S (2012)Google Scholar
  20. 20.
    Tang, Z., Dai, Y., Zhang, X., Huang, L., Yang, F.: Robust image hashing via colour vector angles and discrete wavelet transform. IET Image Processing 8, 142–149 (2014)CrossRefGoogle Scholar
  21. 21.
    Hu, M.K.: Visual pattern recognition by moment invariants. IRE Transaction on Information Theory 8, 179–187 (1962)zbMATHGoogle Scholar
  22. 22.
    Hsia, T.C.: A note on invariant moments in image processing. IEEE Transactions on Systems, Man, and Cybernetics 11, 831–834 (1981)CrossRefGoogle Scholar
  23. 23.
    Goshtasby, A.: Template matching in rotated images. IEEE Transactions on Pattern Analysis and Machine Intelligence 7, 338–344 (1985)CrossRefGoogle Scholar
  24. 24.
    Tang, Z., Zhang, X., Dai, X., Yang, J., Wu, T.: Robust image hash function using local color features. AEÜ-International Journal of Electronics and Communications 67, 717–722 (2013)CrossRefGoogle Scholar
  25. 25.
    Petitcolas, F.A.P.: Watermarking schemes evaluation. IEEE Signal Processing Magazine 17, 58–64 (2000)CrossRefGoogle Scholar
  26. 26.

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Zhenjun Tang
    • 1
    • 2
  • Junwei Yu
    • 2
  • Xianquan Zhang
    • 1
    • 2
  • Shichao Zhang
    • 1
    • 2
    • 3
  1. 1.Guangxi Key Lab of Multi-source Information Mining & SecurityGuangxi Normal UniversityGuilinP.R. China
  2. 2.Department of Computer ScienceGuangxi Normal UniversityGuilinP.R. China
  3. 3.Faculty of Information TechnologyUniversity of TechnologySydneyAustralia

Personalised recommendations