Skip to main content

Architectures for Ultra-Low-Power Multi-Channel Resonator-Based Wireless Transceivers

  • Chapter
Ultra-Low-Power Short-Range Radios

Part of the book series: Integrated Circuits and Systems ((ICIR))

  • 1696 Accesses

Abstract

This chapter explores the use of high-Q RF resonators as both channel filtering and frequency generation elements in ultra-low energy wireless transceivers. Design tradeoffs in using resonators are discussed and an example receiver and transmitter system are presented. In the receiver, direct filtering at RF improves the frequency selectivity of the design and enables a low-energy ring-oscillator based frequency plan. In the transmitter, FBAR-based oscillators can eliminate the need for a PLL, reduce the power consumption of the frequency generation, and improve the overall transmitter efficiency at low output powers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    With the supply voltage increased to 1 V, the peak output power increased by 4 dB instead of the expected 3 dB. This is attributed to a change in PA bias voltages which are adjusted to re-optimize short-circuit current and on-resistance.

References

  1. N. Verma, A. Shoeb, J. Bohorquez, J. Dawson, J. Guttag, A. Chandrakasan, A micro-power EEG acquisition SoC with integrated feature extraction processor for a chronic seizure detection system. IEEE J. Solid-State Circuits 45(4),  804–816 (2010)

    Google Scholar 

  2. IEEE standard for local and metropolitan area networks - part 15.6: wireless body area networks. IEEE Std 802.15.6-2012 (February 2012), pp. 1–271

    Google Scholar 

  3. E. Reusens, W. Joseph, B. Latré, B. Braem, G. Vermeeren, E. Tanghe, L. Martens, I. Moerman, C. Blondia, Characterization of on-body communication channel and energy efficient topology design for wireless body area networks. IEEE Trans. Inf. Technol. Biomed. 13(6), 933–945 (2009)

    Google Scholar 

  4. C. Cojocaru, T. Pamir, F. Balteanu, A. Namdar, D. Payer, I. Gheorghe, T. Lipan, K. Sheikh, J. Pingot, H. Paananen, et al., A 43mw bluetooth transceiver with-91dbm sensitivity, in IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers (2003), pp. 90–480

    Google Scholar 

  5. G. Angelopoulos, A. Paidimarri, A. Chandrakasan, M. Medard, Experimental study of the interplay of channel and network coding in low power sensor applications, in Communications (ICC), Conference on 2013 IEEE International (June, 2013), pp. 5126–5130

    Google Scholar 

  6. B.P. Otis, Rabaey, An ultra-low power MEMS-based two-channel transceiver for wireless sensor networks, in Symposium VLSI Circuits Digest of Technical Papers (2004), pp. 20–23

    Google Scholar 

  7. Y. Chee, A. Niknejad, J. Rabaey, A 46% efficient 0.8 dbm transmitter for wireless sensor networks, in Symposium VLSI Circuits Digest Technical Papers (2006), pp. 43–44

    Google Scholar 

  8. D. Daly, A. Chandrakasan, An energy-efficient OOK transceiver for wireless sensor networks. IEEE J. Solid-State Circuits 42(5), 1003–1011 (2007)

    Google Scholar 

  9. N. Pletcher, S. Gambini, J. Rabaey, A 65 μW, 1.9 GHz RF to digital baseband wakeup receiver for wireless sensor nodes, in IEEE Custom Integrated Circuits Conference, 2007. CICC ’07 (2007), pp. 539–542

    Google Scholar 

  10. N.M. Pletcher, S. Gambini, J.M. Rabaey, A 2GHz 52 μW wake-up receiver with -72dBm sensitivity using uncertain-IF architecture, in IEEE ISSCC Digest Technical Papers (2008), pp. 524–633

    Google Scholar 

  11. M. Contaldo, B. Banerjee, D. Ruffieux, J. Chabloz, E.L. Roux, C.C. Enz, A 2.4-GHz BAW-based transceiver for wireless body area networks. IEEE Trans. Biomed. Circuits Syst. 4(6), 391–399 (2010)

    Google Scholar 

  12. A. Balankutty, S.-A. Yu, Y. Feng, P.R. Kinget, A 0.6-V zero-IF/low-IF receiver with integrated fractional-N synthesizer for 2.4-GHz ISM-Band applications. IEEE J. Solid-State Circuits 45(3), 538–553 (2010)

    Google Scholar 

  13. M. Camus, B. Butaye, L. Garcia, M. Sie, B. Pellat, T. Parra, A 5.4 mW/0.07 mm2 2.4 GHz front-end receiver in 90 nm CMOS for IEEE 802.15.4 WPAN standard. IEEE J. Solid-State Circuits 43(6), 1372–1383 (2008)

    Google Scholar 

  14. A. Liscidini, M. Tedeschi, R. Castello, A 2.4 GHz 3.6mW 0.35mm2 quadrature front-end RX for ZigBee and WPAN applications, in IEEE ISSCC Digest of Technical Papers (2008), pp. 370–620

    Google Scholar 

  15. M. Vidojkovic, X. Huang, P. Harpe, S. Rampu, C. Zhou, L. Huang, K. Imamura, B. Busze, F. Bouwens, M. Konijnenburg, J. Santana, A. Breeschoten, J. Huisken, G. Dolmans, H. de Groot, A 2.4GHz ULP OOK single-chip transceiver for healthcare applications, in IEEE ISSCC Digest of Technical Papers (2011), pp. 458–460

    Google Scholar 

  16. B. Otis, Y.H. Chee, J. Rabaey, A 400 uW-RX, 1.6mW-TX super-regenerative transceiver for wireless sensor networks, in IEEE ISSCC Digest of Technical Papers, vol. 1 (2005), pp. 396–606

    Google Scholar 

  17. J.-Y. Chen, M.P. Flynn, J.P. Hayes, A fully integrated auto-calibrated super-regenerative receiver in 0.13-μm CMOS. IEEE J. Solid-State Circuits 42(9), 1976–1985 (2007)

    Google Scholar 

  18. S. Drago, D.M.W. Leenaerts, F. Sebastiano, L.J. Breems, K.A.A. Makinwa, B. Nauta, A 2.4GHz 830pJ/bit duty-cycled wake-up receiver with −82dBm sensitivity for crystal-less wireless sensor nodes, in IEEE ISSCC Digest of Technical Papers (2010), pp. 224–225

    Google Scholar 

  19. X. Huang, S. Rampu, X. Wang, G. Dolmans, H. de Groot, A 2.4GHz/915MHz 51μW wake-up receiver with offset and noise suppression, in IEEE ISSCC Digest of Technical Papers (2010), pp. 222–223

    Google Scholar 

  20. P. Nadeau, A. Paidimarri, P. Mercier, A. Chandrakasan, Multi-channel 180pJ/b 2.4GHz FBAR-based receiver, in Proceedings IEEE RFIC Symposium (2012), pp. 381–384

    Google Scholar 

  21. J. Bohorquez, A. Chandrakasan, J. Dawson, A 350μW CMOS MSK transmitter and 400μW OOK super-regenerative receiver for medical implant communications. IEEE J. Solid-State Circuits 44(4), 1248–1259 (2009)

    Google Scholar 

  22. J. Bae, L. Yan, H. Yoo, A low energy injection-locked fsk transceiver with frequency-to-amplitude conversion for body sensor applications. IEEE J. Solid-State Circuits 46(4), 928–937 (2011)

    Google Scholar 

  23. B.P. Otis, J.M. Rabaey, A 300μw 1.9-GHz CMOS oscillator utilizing micromachined resonators. IEEE J. Solid-State Circuits 38(7), 1271–1274 (2003)

    Google Scholar 

  24. A. Paidimarri, P. Nadeau, P. Mercier, A. Chandrakasan, A 2.4 GHz multi-channel FBAR-based transmitter with an integrated pulse-shaping power amplifier. IEEE J. Solid-State Circuits 48, 1042–1054 (2013)

    Google Scholar 

  25. M. Flatscher, M. Dielacher, T. Herndl, T. Lentsch, R. Matischek, J. Prainsack, W. Pribyl, H. Theuss, W. Weber, A bulk acoustic wave (BAW) based transceiver for an in-tire-pressure monitoring sensor node. IEEE J. Solid-State Circuits 45(1), 167–177 (2010)

    Google Scholar 

  26. T.H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, 2nd edn. (Cambridge University Press, New York, 2004)

    Google Scholar 

  27. B. Razavi, K.F. Lee, R.-H. Yan, A 13.4-GHz CMOS frequency divider, in IEEE ISSCC Digest of Technical Papers (1994), pp. 176–177

    Google Scholar 

  28. D. Daly, Energy efficient RF transceiver for wireless sensor networks, S.M. Thesis, EECS Department, M.I.T., Cambridge, MA, (May 2005)

    Google Scholar 

  29. N. Cho, J. Lee, L. Yan, J. Bae, S. Kim, H.-J. Yoo, A 60kb/s-to-10Mb/s 0.37nJ/b adaptive-frequency-hopping transceiver for body-area network, in IEEE ISSCC Digest of Technical Papers (2008), pp. 132–602

    Google Scholar 

  30. A. Fazzi, S. Ouzounov, J. van den Homberg, A 2.75mW wideband correlation-based transceiver for body-coupled communication, in IEEE ISSCC Digest Technical Papers (2009), pp. 204–205,205a

    Google Scholar 

  31. L. Yan, J. Bae, S. Lee, B. Kim, T. Roh, K. Song, H.-J. Yoo, A 3.9mW 25-electrode reconfigured thoracic impedance/ECG SoC with body-channel transponder, in IEEE ISSCC Digest of Technical Papers (2010), pp. 490–491

    Google Scholar 

  32. N.V. Helleputte, M. Verhelst, W. Dehaene, G. Gielen, A reconfigurable, 130 nm CMOS 108 pJ/pulse, fully integrated IR-UWB receiver for communication and precise ranging. IEEE J. Solid-State Circuits 45(1), 69–83 (2010)

    Google Scholar 

  33. M. Crepaldi, C. Li, K. Dronson, J. Fernandes, P. Kinget, An ultra-low-power interference-robust IR-UWB transceiver chipset using self-synchronizing OOK modulation, in IEEE ISSCC Digest of Technical Papers (2010), pp. 226–227

    Google Scholar 

  34. D.C. Daly, P.P. Mercier, M. Bhardwaj, A.L. Stone, Z.N. Aldworth, T.L. Daniel, J. Voldman, J.G. Hildebrand, A.P. Chandrakasan, A pulsed UWB receiver SoC for insect motion control. IEEE J. Solid-State Circuits 45(1), 153–166 (2010)

    Google Scholar 

  35. Y. Chee, A. Niknejad, J. Rabaey, A sub-100μw 1.9-ghz CMOS oscillator using FBAR resonator, in IEEE RFIC Symposium Digest Papers (June, 2005), pp. 123–126

    Google Scholar 

  36. E. Vittoz, M. Degrauwe, S. Bitz, High-performance crystal oscillator circuits: theory and application. IEEE J. Solid-State Circuits 23(3), 774–783 (1988)

    Google Scholar 

  37. J. Hu, L. Callaghan, R. Ruby, B. Otis, A 50ppm 600MHz frequency reference utilizing the series resonance of an FBAR, in 2010 IEEE Radio Frequency Integrated Circuits Symposium (RFIC) (May, 2010), pp. 325–328

    Google Scholar 

  38. B. Otis, J. Rabaey, Ultra-Low Power Wireless Technologies for Sensor Networks (Springer, New York, 2007)

    Google Scholar 

  39. S. Chan, P. Restle, K. Shepard, N. James, R. Franch, A 4.6GHz resonant global clock distribution network, in IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, vol.1 (2004), pp. 342–343

    Google Scholar 

  40. P. Mercier, D. Daly, A. Chandrakasan, An energy-efficient all-digital UWB transmitter employing dual capacitively-coupled pulse-shaping drivers. IEEE J. Solid-State Circuits 44(6), 1679–1688 (2009)

    Google Scholar 

  41. F. Raab, P. Asbeck, S. Cripps, P. Kenington, Z. Popovic, N. Pothecary, J. Sevic, N. Sokal, Power amplifiers and transmitters for RF and microwave. IEEE Trans. Microw. Theory Tech. 50(3), 814–826 (2002)

    Google Scholar 

  42. A. Molnar, B. Lu, S. Lanzisera, B. Cook, K. Pister, An ultra-low power 900 MHz rf transceiver for wireless sensor networks, in Proceedings IEEE Custom Integrated Circuits Conference (CICC) (2004), pp. 401–404

    Google Scholar 

  43. D. Ruffieux, J. Chabloz, M. Contaldo, C. Muller, F. Pengg, P. Tortori, A. Vouilloz, P. Volet, C. Enz, A narrowband multi-channel 2.4 GHz MEMS-based transceiver. IEEE J. Solid-State Circuits 4(1), 228–239 (2009)

    Google Scholar 

  44. A. Wong, D. McDonagh, G. Kathiresan, O. Omeni, O. El-Jamaly, T. Chan, P. Paddan, A. Burdett, A 1V, micropower system-on-chip for vital-sign monitoring in wireless body sensor networks, in IEEE International Solid-State Circuits Conference (ISSCC) Digital Technical Papers (2008), pp. 138–602

    Google Scholar 

  45. P. Bradley, An ultra low power, high performance medical implant communication system (mics) transceiver for implantable devices, in Proceedings of IEEE Biomedical Circuits and Systems Conference (2006), pp. 158–161

    Google Scholar 

  46. R. Marathe, B. Bahr, W. Wang, Z. Mahmood, L. Daniel, D. Weinstein, Resonant body transistors in IBM’s 32 nm SOI CMOS technology. J. Microelectromech. Syst. 23, 636–650 (June, 2014)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Interconnect Focus Center, one of six research centers funded under the FCRP, an SRC entity. Chip fabrication was provided by the TSMC University Shuttle Program and FBARs were provided by Avago Technologies. Additional funding was provided by the Natural Sciences and Engineering Research Council of Canada fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phillip M. Nadeau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nadeau, P.M., Paidimarri, A., Mercier, P.P., Chandrakasan, A.P. (2015). Architectures for Ultra-Low-Power Multi-Channel Resonator-Based Wireless Transceivers. In: Mercier, P., Chandrakasan, A. (eds) Ultra-Low-Power Short-Range Radios. Integrated Circuits and Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-14714-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14714-7_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14713-0

  • Online ISBN: 978-3-319-14714-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics