Skip to main content

Energy Harvesting Opportunities for Low-Power Radios

  • Chapter
Ultra-Low-Power Short-Range Radios

Part of the book series: Integrated Circuits and Systems ((ICIR))

Abstract

Advancements in integrated circuit design have made it possible to have ultra-low-power wireless sensor nodes for health monitoring, smart buildings, industrial automation and for the automotive industry. These low power circuits generally have an Analog Front End (AFE) to sense weak signals, ADCs to digitize the sensed signals, microcontrollers for processing and low power radios for transmitting the low data rate information to a base station. These wireless sensors may be deployed in remote locations or may be in large numbers making battery replacement challenging. By harvesting the ambient energy, it is possible to power these systems and achieve near perpetual operation making battery replacement unnecessary. However, in order for these systems to extract energy from harvesters, these circuits need to not only be ultra-low-power themselves but they also need to ensure maximum available power is always extracted from the energy harvester. In this chapter, the basics of energy harvesting systems will be discussed with a focus on low power design techniques, maximum power extraction and battery management in these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Yip, J.L. Bohorquez, A.P. Chandrakasan, A 0.6 V 2.9μW mixed-signal front-end for ECG monitoring, in IEEE Symposium on VLSI Circuits (June 2012)

    Google Scholar 

  2. F.M. Yaul, A.P. Chandrakasan, A 10b 0.6 nW SAR ADC with data-dependent energy savings using LSB-first successive approximation, in IEEE International Solid State Circuits Conference (February 2014)

    Google Scholar 

  3. J.Y. Kwong, Y.K. Ramadass, N. Verma, M. Koesler, K. Huber, H. Moormann, A.P. Chandrakasan, A 65 nm Sub-Vt microcontroller with integrated SRAM and switched-capacitor DC-DC converter, in IEEE International Solid State Circuits Conference (February 2008)

    Google Scholar 

  4. A. Paidimarri, P. Nadeau, P. Mercier, A. Chandrakasan, A 440 pJ/bit 1 Mb/s 2.4 GHz multi-channel FBAR-based TX and an integrated pulse-shaping PA, in IEEE Symposium on VLSI Circuits (June 2012)

    Google Scholar 

  5. P. Nadeau, A. Paidimarri, P. Mercier, A. Chandrakasan, Multi-channel 180 pJ/bit 2.4 GHz FBAR-based receiver, IEEE Radio Frequency Integrated Circuits (RFIC) Symposium (June 2012)

    Google Scholar 

  6. M. Gratzel, Photovoltaic and photoelectrochemical conversion of solar energy. Phil. Trans. R. Soc. A 365, 993–1005 (2007)

    Article  Google Scholar 

  7. J. Lim, C.-K. Huang, M. Ryan, G.J. Snyder, J. Herman, J.-P. Fleurial, MEMS/ECD methods for making Bi2−x Sb x Te3 thermoelectric devices. NASA Technical Reports (July 2008)

    Google Scholar 

  8. N.S. Shenck, J.A. Paradiso, Energy harvesting with shoe-mounted piezoelectrics. IEEE Micro 21, 30–42 (2001)

    Article  Google Scholar 

  9. R.J.M. Vuller, R. van Schaijk, I. Doms, C. Van Hoof, R. Mertens, Miropower energy harvesting. Solid State Electron. 53, 684–693 (2009)

    Article  Google Scholar 

  10. Y.K. Ramadass, A.P. Chandrakasan, An efficient piezoelectric energy harvesting interface circuit using a bias-flip rectifier and shared inductor, IEEE J. Solid State Circuits 45(1), 189–204 (2010)

    Article  Google Scholar 

  11. G.K. Ottman, H.F. Hofmann, A.C. Bhatt and G.A. Lesieutre, Adaptive piezoelectric energy harvesting circuit for wireless remote power supply. IEEE Trans. Power Electron. 17(5), 669–676 (2002)

    Article  Google Scholar 

  12. N.J. Guilar, R. Amirtharajah, P.J. Hurst, S.H. Lewis, An energy-aware multiple-input power supply with charge recovery for energy harvesting applications. IEEE ISSCC Digest of Technical Papers (February 2009), pp. 298–299

    Google Scholar 

  13. Y.K. Ramadass, A.P. Chandrakasan, A battery-less thermoelectric energy harvesting interface circuit with 35 mV startup voltage. IEEE J. Solid State Circuits 46(1), 333–341 (2011)

    Article  Google Scholar 

  14. K. Kadirvel, Y. Ramadass, U. Lyles, J. Carpenter, V. Ivanov, V. McNeil, A. Chandrakasan, B. Lum-Shue-Chan, A 330 nA energy-harvesting charger with battery management for solar and thermoelectric energy harvesting, in IEEE International Solid-State Circuits Conference (ISSCC) (February 2012)

    Google Scholar 

  15. S. Bandyopadhyay, A.P. Chandarkasan, Platform architecture for solar, thermal, and vibration energy combining with MPPT and single inductor. IEEE J. Solid-State Circuits 47(9), 2199–2215 (2012)

    Article  Google Scholar 

  16. M. Chen, G.A. Rincon-Mora, Accurate, compact, and power-efficient Li-ion battery charger circuit. IEEE Trans. Circuits Syst. Express Briefs 53(11), 1180,1184 (2006)

    Google Scholar 

  17. Texas Instruments Datasheet BQ25570. Available Online-http://www.ti.com/product/bq25570

    Google Scholar 

  18. Linear Technology Datasheet LTC3108. Available Online-http://www.linear.com/product/LTC3108

    Google Scholar 

  19. Maxim Integrated Datasheet MAX17710. Available Online-http://datasheets.maximintegrated.com/en/ds/MAX17710.pdf

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saurav Bandyopadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bandyopadhyay, S., Ramadass, Y.K. (2015). Energy Harvesting Opportunities for Low-Power Radios. In: Mercier, P., Chandrakasan, A. (eds) Ultra-Low-Power Short-Range Radios. Integrated Circuits and Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-14714-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14714-7_12

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14713-0

  • Online ISBN: 978-3-319-14714-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics