Skip to main content

Handheld Gas Sensing System

  • Chapter

Abstract

Handheld gas sensing systems have drawn attentions recently for personal use and daily applications. However, commercially available gas detection devices are yet to satisfy the needs due to the challenging issues of system miniaturization, such as insufficient selectivity and sensitivity. In this chapter, we introduce an approach to achieve this goal. Based on an array of surface acoustive wave (SAW) gas sensors, a bio-inspired gas sensing system (also called electronic nose) could be realized to construct a robust system to identify gases. To increase the gas sensitivity, nanocomposites of polymers and ordered mesoporous carbons (OMCs) is introduced. The polymers are directly grown on the carbon material through a radical polymerization process, thus forming interpenetrating and inseparable composite frameworks with carbon. Furthermore, to reduce the system size and power consumption, the integrated circuits (IC) technology is adopted to implement the readout interface circuit to replace bulky instruments, such as frequency counter. Finally, several odor classification algorithms are introduced to perform gas classification.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Sun Y, Ong KY. Detection technologies for chemical warfare agents and toxic vapors. Boca Raton: CRC; 2004.

    Google Scholar 

  2. Yinon J. Field detection and monitoring of explosives. Trends Anal Chem (TrAC). 2002;21(4):292–301.

    Google Scholar 

  3. Cao W, Duan Y. Breath analysis: potential for clinical diagnosis and exposure assessment. Clin Chem. 2006;52(5):800–11.

    MathSciNet  Google Scholar 

  4. Yamazoe N, Sakai G, Shimanoe K. Oxide semiconductor gas sensors. Catal Surv Jpn. 2003;7(1):63–75.

    Google Scholar 

  5. Panpan F, Zhixue Y. Metal oxide semiconductor gas sensor. Chem Ind Times. 2013;3:022.

    Google Scholar 

  6. Miasik JJ, Hooper A, Tofield BC. Conducting polymer gas sensors. J Chem Soc Faraday Trans 1. 1986;82(4):1117–26.

    Google Scholar 

  7. Bai H, Shi G. Gas sensors based on conducting polymers. Sensors. 2007;7(3):267–307.

    Google Scholar 

  8. Ding B, et al. Electrospun nanofibrous membranes coated quartz crystal microbalance as gas sensor for NH3 detection. Sensors Actuators B Chem. 2004;101(3):373–80.

    Google Scholar 

  9. Koshets IA, et al. Calixarene films as sensitive coatings for QCM-based gas sensors. Sensors Actuators B Chem. 2005;106(1):177–81.

    Google Scholar 

  10. Grate JW, Patrash SJ, Abraham MH. Method for estimating polymer-coated acoustic wave vapor sensor responses. Anal Chem. 1995;67(13):2162–9.

    Google Scholar 

  11. Grate JW, et al. Determination of partition coefficients from surface acoustic wave vapor sensor responses and correlation with gas-liquid chromatographic partition coefficients. Anal Chem. 1988;60(9):869–75.

    Google Scholar 

  12. Ando I, Furuki M, Pu LS. Optical gas sensor. US patent No. 5,030,009. 1991 July 9.

    Google Scholar 

  13. Sharpe SW, et al. Gas-phase databases for quantitative infrared spectroscopy. Appl Spectrosc. 2004;58(12):1452–61.

    MathSciNet  Google Scholar 

  14. Gardner JW, Varadan VK, Awadelkarim OO. Microsensors, MEMS, and smart devices, vol. 1. Chichester: Wiley; 2001.

    Google Scholar 

  15. Hao HC, et al. Development of a portable electronic nose based on chemical surface acoustic wave array with multiplexed oscillator and readout electronics. Sensors Actuators B Chem. 2010;146(2):545–53.

    Google Scholar 

  16. Dai E, et al. Organic vapor sensors based on SAW resonator and organic films. IEEE Trans Ultrason Ferroelectr Freq Control. 1997;44(2):309–14.

    Google Scholar 

  17. Penza M, Vasanelli L. SAW NOx gas sensor using WO3 thin-film sensitive coating. Sensors Actuators B Chem. 1997;41(1):31–6.

    Google Scholar 

  18. Wells M, Crooks RM. Interactions between organized, surface-confined monolayers and vapor-phase probe molecules. 10. Preparation and properties of chemically sensitive dendrimer surfaces. J Am Chem Soc. 1996;118(16):3988–9.

    Google Scholar 

  19. Wang C, He X-W, Chen L-X. A piezoelectric quartz crystal sensor array self assembled calixarene bilayers for detection of volatile organic amine in gas. Talanta.2002;57(6):1181–8.

    Google Scholar 

  20. Dermody DL, Crooks RM, Kim T. Interactions between organized, surface-confined monolayers and vapor-phase probe molecules. 11. Synthesis, characterization, and chemical sensitivity of self-assembled polydiacetylene/calix [n] arene bilayers. J Am Chem Soc. 1996;118(47):11912–7.

    Google Scholar 

  21. Sankaran S, Khot LR, Panigrahi S. Biology and applications of olfactory sensing system: a review. Sensors Actuators B Chem. 2012;171:1–17.

    Google Scholar 

  22. Gopel W, Weiss T. Design for smelling. IEEE Spectr. 1998;35(9):32–4.

    Google Scholar 

  23. Craven MA, Gardner JW, Bartlett PN. Electronic noses—development and future prospects. Trends Anal Chem (TrAC). 1996;15(9):486–93.

    Google Scholar 

  24. Gardner JW, Bartlett PN. A brief history of electronic noses. Sensors Actuators B Chem. 1994;18(1):210–1.

    Google Scholar 

  25. McCartney W. Olfaction and odours. An osphresiological essay. Berlin: Springer; 1968.

    Google Scholar 

  26. Lammerink TSJ, et al. Intelligent gas-mixture flow sensor. Sensors Actuators A Phys. 1995;47(1):380–4.

    Google Scholar 

  27. Firestein S. How the olfactory system makes sense of scents. Nature. 2001;413(6852):211–8.

    Google Scholar 

  28. Breer H. Olfactory receptors: molecular basis for recognition and discrimination of odors. Anal Bioanal Chem. 2003;377(3):427–33.

    Google Scholar 

  29. Röck F, Barsan N, Weimar U. Electronic nose: current status and future trends. Chem Rev. 2008;108(2):705–25.

    Google Scholar 

  30. Tang K-T, Li C-H, Chiu S-W. An electronic-nose sensor node based on a polymer-coated surface acoustic wave array for wireless sensor network applications. Sensors. 2011;11(5):4609–21.

    Google Scholar 

  31. Lozano J, Santos JP, Horrillo MC. Enrichment sampling methods for wine discrimination with gas sensors. J Food Compos Anal. 2008;21(8):716–23.

    Google Scholar 

  32. Lozano J, et al. Electronic nose for wine ageing detection. Sensors Actuators B Chem. 2008;133(1):180–6.

    Google Scholar 

  33. Wu T-T, Chen Y-Y, Chou T-H. A high sensitivity nanomaterial based SAW humidity sensor. J Phys D Appl Phys. 2008;41(8):085101.

    Google Scholar 

  34. Ricco AJ, Martin SJ, Zipperian TE. Surface acoustic wave gas sensor based on film conductivity changes. Sensors Actuators. 1985;8(4):319–33.

    Google Scholar 

  35. Huang F-C, Chen Y-Y, Wu T-T. A room temperature surface acoustic wave hydrogen sensor with Pt coated ZnO nanorods. Nanotechnology. 2009;20(6):065501.

    Google Scholar 

  36. Gardner JW, et al. An electronic nose system for monitoring the quality of potable water. Sensors Actuators B Chem. 2000;69(3):336–41.

    Google Scholar 

  37. Shin HW, et al. Classification of the strain and growth phase of cyanobacteria in potable water using an electronic nose system. IEE Proc Sci Meas Technol. 2000;147(4):158–64.

    Google Scholar 

  38. Yao D-J, et al. A biochemical sensing system using an 11-MUA/calix [6] arene bilayer to sense amine vapors. J Micromech Microeng. 2007;17(8):1435.

    Google Scholar 

  39. Cai Q, et al. Kinetic assay of antitrypsin in human serum by a surface acoustic wave (SAW)-impedance sensor. Fresenius J Anal Chem. 1996;356(1):96–7.

    Google Scholar 

  40. Casalinuovo IA, et al. Application of electronic noses for disease diagnosis and food spoilage detection. Sensors. 2006;6(11):1428–39.

    Google Scholar 

  41. Shen C-Y, Huang C-P, Huang W-T. Gas-detecting properties of surface acoustic wave ammonia sensors. Sensors Actuators B Chem. 2004;101(1):1–7.

    Google Scholar 

  42. Groves WA, Zellers ET, Frye GC. Analyzing organic vapors in exhaled breath using a surface acoustic wave sensor array with preconcentration: selection and characterization of the preconcentrator adsorbent. Anal Chim Acta. 1998;371(2):131–43.

    Google Scholar 

  43. D'amico A, Verona E. SAW sensors. Sensors Actuators. 1989;17(1):55–66.

    Google Scholar 

  44. Andle JC, Vetelino JF. Acoustic wave biosensors. Sensors Actuators A Phys. 1994;44(3):167–76.

    Google Scholar 

  45. Ballantine Jr DS, et al. Acoustic wave sensors: theory, design, & physico-chemical applications. San Diego: Academic; 1996.

    Google Scholar 

  46. Vellekoop MJ, et al. Integrated-circuit-compatible design and technology of acoustic-wave-based microsensors. Sensors Actuators A Phys. 1994;44(3):249–63.

    Google Scholar 

  47. Gizeli E, et al. A love plate biosensor utilising a polymer layer. Sensors Actuators B Chem. 1992;6(1):131–7.

    Google Scholar 

  48. Freudenberg J, et al. A contactless surface acoustic wave biosensor. Biosens Bioelectron. 1999;14(4):423–5.

    Google Scholar 

  49. Länge K, Rapp BE, Rapp M. Surface acoustic wave biosensors: a review. Anal Bioanal Chem. 2008;391(5):1509–19.

    Google Scholar 

  50. Ferreira GN, da-Silva A-C, Tomé B. Acoustic wave biosensors: physical models and biological applications of quartz crystal microbalance. Trends Biotechnol. 2009;27(12):689–97.

    Google Scholar 

  51. Bender F, et al. Improvement of surface acoustic wave gas and biosensor response characteristics using a capacitive coupling technique. Anal Chem. 2004;76(13):3837–40.

    Google Scholar 

  52. Huang Y-S, Chen Y-Y, Wu T-T. A passive wireless hydrogen surface acoustic wave sensor based on Pt-coated ZnO nanorods. Nanotechnology. 2010;21(9):095503.

    Google Scholar 

  53. Greve DW, et al. Surface acoustic wave devices for harsh environment wireless sensing. Sensors. 2013;13(6):6910–35.

    Google Scholar 

  54. Enguang D, et al. Organic vapor sensors based on SAW resonator and organic films. IEEE Trans Ultrason Ferroelectr Freq Control. 1997;44(2):309–14.

    Google Scholar 

  55. Drafts B. Acoustic wave technology sensors. IEEE Trans Microwave Theory Tech. 2001;49(4):795–802.

    Google Scholar 

  56. Caliendo C, et al. Surface acoustic wave humidity sensor. Sensors Actuators B Chem. 1993;16(1):288–92.

    Google Scholar 

  57. Zhou R, et al. Phthalocyanines as sensitive materials for chemical sensors. Appl Organomet Chem. 1996;10(8):557–77.

    Google Scholar 

  58. Zellers ET, White RM, Wenzel SW. Computer modelling of polymer-coated ZnO/Si surface-acoustic-wave and lamb-wave chemical sensors. Sensors Actuators. 1988;14(1):35–45.

    Google Scholar 

  59. Tseng C-C. Elastic surface waves on free surface and metallized surface of CdS, ZnO, and PZT-4. J Appl Phys. 1967;38(11):4281–4.

    Google Scholar 

  60. Bohrer FI, et al. Comparative gas sensing in cobalt, nickel, copper, zinc, and metal-free phthalocyanine chemiresistors. J Am Chem Soc. 2008;131(2):478–85.

    Google Scholar 

  61. Li P, Li Y, Yang M. Hyperbranched polycarboxylates and their nanocomposites with ZnO: investigations on the humidity-sensitive properties. J Appl Polym Sci.2011;120(4):1994–2000.

    Google Scholar 

  62. Kukushkin IV, et al. Ultrahigh-frequency surface acoustic waves for finite wave-vector spectroscopy of two-dimensional electrons. Appl Phys Lett. 2004;85(19):4526–8.

    Google Scholar 

  63. Fu YQ, et al. Microfluidics based on ZnO/nanocrystalline diamond surface acoustic wave devices. Biomicrofluidics. 2012;6(2):024105.

    Google Scholar 

  64. Morgan DR. Surface acoustic wave devices and applications: 1. Introductory review. Ultrasonics. 1973;11(3):121–31.

    Google Scholar 

  65. Penza M, Milella E, Anisimkin VI. Gas sensing properties of Langmuir-Blodgett polypyrrole film investigated by surface acoustic waves. IEEE Trans Ultrason Ferroelectr Freq Control. 1998;45(5):1125–32.

    Google Scholar 

  66. Thompson M, Stone DC. Surface-launched acoustic wave sensors: chemical sensing and thin-film characterization. New York: Wiley; 1997.

    Google Scholar 

  67. Yanagisawa T, et al. The preparation of alkyltrimethylammonium-kanemite complexes and their conversion to microporous materials. Bull Chem Soc Jpn. 1990;63(4):988–92.

    Google Scholar 

  68. Kresge CT, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature. 1992;359(6397):710–2.

    Google Scholar 

  69. Horvath G, Kawazoe KJ. Generalized synthesis of periodic surfactant/inorganic composite materials. Chem Eng Jpn. 1983;16:470–7.

    Google Scholar 

  70. Zhao D, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science. 1998;279(5350):548–52.

    Google Scholar 

  71. Ciesla U, Schüth F. Ordered mesoporous materials. Microporous Mesoporous Mater. 1999;27(2):131–49.

    Google Scholar 

  72. Soler-Illia GJ, Sanchez C, Lebeau B, Patarin J, et al. Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chem Rev. 2002;102(11):4093–138.

    Google Scholar 

  73. Boettcher SW, et al. Harnessing the sol–gel process for the assembly of non-silicate mesostructured oxide materials. Acc Chem Res. 2007;40(9):784–92.

    Google Scholar 

  74. Trewyn BG, et al. Synthesis and functionalization of a mesoporous silica nanoparticle based on the sol–gel process and applications in controlled release. Acc Chem Res. 2007;40(9):846–53.

    Google Scholar 

  75. Ryoo R, Joo SH, Jun S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. J Phys Chem B. 1999;103(37):7743–6.

    Google Scholar 

  76. Oh SM, Kim KB. Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors. Chem Commun. 1999;21:2177–8.

    Google Scholar 

  77. Jun S, et al. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. J~Am Chem Soc. 2000;122(43):10712–3.

    Google Scholar 

  78. Joo SH, et al. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature. 2001;412(6843):169–72.

    Google Scholar 

  79. Kruk M, et al. Synthesis and characterization of hexagonally ordered carbon nanopipes. Chem Mater. 2003;15(14):2815–23.

    Google Scholar 

  80. Solovyov LA, et al. Comprehensive structure analysis of ordered carbon nanopipe materials CMK-5 by X-ray diffraction and electron microscopy. Chem Mater. 2004;16(11):2274–81.

    Google Scholar 

  81. Lund K, Muroyama N, Terasaki O. Accidental extinction in powder XRD intensity of porous crystals: mesoporous carbon crystal CMK-5 and layered zeolite-nanosheets. Microporous Mesoporous Mater. 2010;128(1):71–7.

    Google Scholar 

  82. Che S, et al. Synthesis of large-pore Ia3d mesoporous silica and its tubelike carbon replica. Angew Chem. 2003;115(33):4060–4.

    Google Scholar 

  83. Kim S-S, et al. Nanocasting of carbon nanotubes: in-situ graphitization of a low-cost mesostructured silica templated by non-ionic surfactant micelles. Chem Commun. 2003;12:1436–7.

    Google Scholar 

  84. Kim J, Lee J, Hyeon T. Direct synthesis of uniform mesoporous carbons from the carbonization of as-synthesized silica/triblock copolymer nanocomposites. Carbon. 2004;42(12):2711–9.

    Google Scholar 

  85. Yang C-M, et al. Facile template synthesis of ordered mesoporous carbon with polypyrrole as carbon precursor. Chem Mater. 2005;17(2):355–8.

    Google Scholar 

  86. Lee J, Kim J, Hyeon T. Recent progress in the synthesis of porous carbon materials. Adv Mater. 2006;18(16):2073–94.

    Google Scholar 

  87. Liang C, Li Z, Dai S. Mesoporous carbon materials: synthesis and modification. Angew Chem Int Ed. 2008;47(20):3696–717.

    Google Scholar 

  88. Inagaki M, Orikasa H, Morishita T. Morphology and pore control in carbon materials via templating. RSC Adv. 2011;1(9):1620–40.

    Google Scholar 

  89. Xia Y, Yang Z, Mokaya R. Templated nanoscale porous carbons. Nanoscale. 2010;2(5):639–59.

    Google Scholar 

  90. Shi Y, Wan Y, Zhao D. Ordered mesoporous non-oxide materials. Chem Soc Rev. 2011;40(7):3854–78.

    Google Scholar 

  91. Moriguchi I, et al. Micelle-templated mesophases of phenol-formaldehyde polymer. Chem Lett. 1999;11:1171–2.

    Google Scholar 

  92. Liang C, et al. Synthesis of a large-scale highly ordered porous carbon film by self-assembly of block copolymers. Angew Chem Int Ed. 2004;43(43):5785–9.

    Google Scholar 

  93. Meng Y, et al. Ordered mesoporous polymers and homologous carbon frameworks: amphiphilic surfactant templating and direct transformation. Angew Chem. 2005;117(43):7215–21.

    Google Scholar 

  94. Tanaka S, et al. Synthesis of ordered mesoporous carbons with channel structure from an organic–organic nanocomposite. Chem Commun. 2005;16:2125–7.

    Google Scholar 

  95. Yu C, et al. High-yield synthesis of periodic mesoporous silica rods and their replication to mesoporous carbon rods. Adv Mater. 2002;14(23):1742–5.

    Google Scholar 

  96. James D, et al. Chemical sensors for electronic nose systems. Microchim Acta. 2005;149(1–2):1–17.

    Google Scholar 

  97. Harris CM. Product review: seeing SAW potential. Anal Chem. 2003;75(15):355-A.

    Google Scholar 

  98. Kesting RE, Fritzsche AK. Polymeric gas separation membranes. New York: Wiley; 1993.

    Google Scholar 

  99. Ku P-H, et al. Polymer/ordered mesoporous carbon nanocomposite platelets as superior sensing materials for gas detection with surface acoustic wave devices. Langmuir. 2012;28(31):11639–45.

    Google Scholar 

  100. Choi M, Ryoo R. Ordered nanoporous polymer–carbon composites. Nat Mater. 2003;2(7):473–6.

    Google Scholar 

  101. Chen S-Y, et al. A facile route to synthesizing functionalized mesoporous SBA-15 materials with platelet morphology and short mesochannels. Chem Mater. 2008;20(12):3906–16.

    Google Scholar 

  102. National Institute for Occupational Safety and Health (NIOSH) and United States of America. NIOSH Pocket Guide to Chemical Hazards; 1997.

    Google Scholar 

  103. Neimark AV, Ravikovitch PI. Capillary condensation in MMS and pore structure characterization. Microporous Mesoporous Mater. 2001;44:697–707.

    Google Scholar 

  104. Ravikovitch PI, Neimark AV. Characterization of micro-and mesoporosity in SBA-15 materials from adsorption data by the NLDFT method. J Phys Chem B. 2001;105(29):6817–23.

    Google Scholar 

  105. Ravikovitch PI, Neimark AV. Characterization of nanoporous materials from adsorption and desorption isotherms. Colloids Surf A Physicochem Eng Asp. 2001;187:11–21.

    Google Scholar 

  106. Hsu Y-C, et al. Facile synthesis of mesoporous silica SBA-15 with additional intra-particle porosities. Chem Mater. 2007;19(5):1120–6.

    Google Scholar 

  107. Yasin FM, Tye KF, Reaz MBI. Design and implementation of interface circuitry for CMOS-based SAW gas sensors. In: IEEE International Proceedings SOC Conference, 2005. Herndon, VA: IEEE; 2005.

    Google Scholar 

  108. Wolff U, et al. SAW sensors for harsh environments. IEEE Sensors J. 2001;1(1):4–13.

    Google Scholar 

  109. Casalnuovo SA, Hietala VM, Heller EJ, Frye-Mason GC, Baea AG, Wendt JR. Monolithic integration of GaAs SAW chemical microsensor arrays and detection electronics. In: Proceedings of Solid-State Sensor and Actuator Workshop; 2000 June 4–8. Hilton Head Island, SC; 2000.

    Google Scholar 

  110. Perera A, et al. A portable electronic nose based on embedded PC technology and GNU/Linux: hardware, software and applications. IEEE Sensors J. 2002;2(3):235–46.

    Google Scholar 

  111. Adhikari B, Majumdar S. Polymers in sensor applications. Prog Polym Sci. 2004;29(7):699–766.

    Google Scholar 

  112. Kim SJ. The effect on the gas selectivity of CNT-based gas sensors by binder in SWNT/silane sol solution. IEEE Sensors J. 2010;10(1):173–7.

    Google Scholar 

  113. Hsu H-P, Shih J-S. Multi-channel surface acoustic wave sensors based on principal component analysis (PCA) and linear discriminate analysis (LDA) for organic vapors. J Chin Chem Soc. 2006;53(4):815–24.

    Google Scholar 

  114. Hsu H-P, Shih J-S. Multi-channel surface acoustic wave (SAW) sensor based on artificial back propagation neural (BPN) network and multivariate linear regression analysis (MLR) for organic vapors. J Chin Chem Soc. 2007;54(2):401–10.

    Google Scholar 

  115. Eisen MB, et al. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci. 1998;95(25):14863–8.

    Google Scholar 

  116. Sokal RR. A statistical method for evaluating systematic relationships. Univ Kans Sci Bull. 1958;38:1409–38.

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support of the National Science Council of Taiwan, under Contract No. NSC 101-2220-E-007-006, NSC 102-2220-E-007-006, and Ministry of Science and Technology, under Contract No. MOST 103-2220-E-007-023. We also acknowledge the support of the Chung-Shan Institute of Science and Technology for technical consulting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kea-Tiong Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chiu, SW., Hao, HC., Yang, CM., Yao, DJ., Tang, KT. (2015). Handheld Gas Sensing System. In: Lin, YL., Kyung, CM., Yasuura, H., Liu, Y. (eds) Smart Sensors and Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-14711-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14711-6_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14710-9

  • Online ISBN: 978-3-319-14711-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics