Skip to main content

Energy Harvesting with Supercapacitor-Based Energy Storage

  • Chapter
Smart Sensors and Systems

Abstract

Harvesting energy from the environment is a desirable and increasingly important capability in several emerging applications of smart sensing systems. Due to the low-power characteristics of many smart-sensor systems, their energy harvesting systems (EHS) can achieve high efficiency by emphasizing low overhead in maximum power point tracking (MPPT) and the use of supercapacitors as a promising type of energy storage elements (ESE). Considerations in designing efficient charging circuitry for supercapacitors include leakage, residual energy, topology, energy density, and charge redistribution. This chapter first reviews ambient energy sources and their energy transducers for harvesting, followed by descriptions harvesters with low-overhead efficient charging circuitry and supercapacitor-based storage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahska R, Mamur H. A review: thermoelectric generators in renewable energy. Int J Renew Energ Res (IJRER). 2014;4:128–36.

    Google Scholar 

  2. Beeby S, Tudor M, White N. Energy harvesting vibration sources for microsystems applications. J Measure Sci Technol. 2006;17(12):175–96.

    Article  Google Scholar 

  3. Bierschenk J. Optimized thermoelectrics for energy harvesting applications. In: Proceedings of the 17th international symposium on the applications of ferroelectrics (ISAF), Santa Re, Feb 23–28, 2008. p. 1–4

    Google Scholar 

  4. Brunelli D, Moser C, Thiele L, Benini L. Design of a solar-harvesting circuit for batteryless embedded systems. IEEE Trans Circuits Syst. 2009;56:2519–28.

    Article  MathSciNet  Google Scholar 

  5. Burke A. Ultracapacitors: why, how, and where is the technology. J Power Sources. 2000;91:37–50.

    Article  Google Scholar 

  6. Chen CY, Chou PH. DuraCap: a supercapacitor-based, power-bootstrapping, maximum power point tracking energy-harvesting system. In: Proceedings of the international symposium on low power electronics and design (ISLPED). Austin: ACM; 2010. p. 313–8.

    Google Scholar 

  7. Chevalerias O, O’Donnell T, Power D, O’Donovan N, Duffy G, Grant G, O’Mathuna SC. Inductive telemetry of multiple sensor modules. IEEE Pervasive Comput. 2005;4(1):46–52.

    Article  Google Scholar 

  8. Chou PH, Kim S. Techniques for maximizing efficiency of solar energy harvesting systems. In: Proceedings of the fifth conference on mobile computing and ubiquitous networking (ICMU 2010), Seattle, WA, USA, 2010. p. 26–8.

    Google Scholar 

  9. Chou PH, Li D. Maximizing efficiency of solar-powered systems by load matching. In: Proceedings of the international symposium on low power electronics and design (ISLPED), August 9–11, 2004. p. 162–7.

    Google Scholar 

  10. Diab Y, Venet P, Gualous H, Rojat G. Electrical, frequency and thermal measurement and modelling of supercapacitor performance. In: The 3rd european symposium on supercapacitors and applications, Rome, Italy, November 6–7, 2008. p.1066–9

    Google Scholar 

  11. Dutta P, Hui J, Jeong J, Kim S, Sharp C, Taneja J, Tolle G, Whitehouse K, Culler D. Trio: Enabling sustainable and scalable outdoor wireless sensor network deployments. In: The fifth international conference on information processing in sensor networks (IPSN/SPOTS), April 19–21, 2006. p. 407–15.

    Google Scholar 

  12. Ferrari M, Ferrari V, Guizzetti M, Marioli D, Taroni A. Characterization of thermoelectric modules for powering autonomous sensors. IEEE Trans Instrum Meas. 2009;58:99–107.

    Article  Google Scholar 

  13. Hohm D, Ropp M. Comparative study of maximum power point tracking algorithms using an experimental, programmable, maximum power point tracking test bed. In: Conference record of the Twenty-Eighth IEEE photovoltaic specialists conference, September 15–22, 2000. p. 1699–702.

    Google Scholar 

  14. Jiang X, Polastre J, Culler D. Perpetual environmentally powered sensor networks. In: Proceedings of fourth international symposium on information processing in sensor networks (ISPN), April 15, 2005. p. 463–8.

    Google Scholar 

  15. Kim R, Lai J, York B, Koran A. Analysis and design of maximum power point tracking scheme for thermoelectric battery energy storage system. IEEE Trans Ind Electron. 2009;56: 3709–16.

    Article  Google Scholar 

  16. Kim S, Chou PH. Energy harvesting by sweeping voltage-escalated charging of a reconfigurable supercapacitor array. In: Proceedings of the international symposium on low power electronics and design (ISLPED). Fukuoka: ACM; 2011. p. 235–40.

    Chapter  Google Scholar 

  17. Kim S, Chou PH. Size and topology optimization for supercapacitor-based sub-watt energy harvesters. IEEE Trans Power Electron. 2013;28:2068–80.

    Article  Google Scholar 

  18. Kim S, Torbol M, Chou PH. Remote structural health monitoring systems for next generation scada. Smart Struct Syst. 2013;11:511–31.

    Article  Google Scholar 

  19. Kim Y, Chang N, Wang Y, Pedram M. Maximum power transfer tracking for a photovoltaic-supercapacitor energy system. In: Proceeding of the 16th ACM/IEEE international symposium on low power electronics and design ISLPED. New York: ACM; 2010. p. 307–12.

    Chapter  Google Scholar 

  20. KINETRON: The micro generating system for a watch. http://www.kinetron.eu/wp-content/uploads/2014/04/MGSWatch.pdf

  21. Koutroulis E, Kalaitzakis K, Voulgaris, N. Development of a microcontroller-based, photovoltaic maximum power point tracking control system. IEEE Trans Power Electron. 2001;16:46–54.

    Article  Google Scholar 

  22. Koutroulis E, Kalaitzakis K. Design of a maximum power tracking system for wind-energy-conversion applications. IEEE Trans Ind Electron. 2006;53(2):486–94.

    Article  Google Scholar 

  23. Kymissis J, Kendall C, Paradiso J, Gershenfeld N. Parasitic power harvesting in shoes. In: Proceedings of the 2nd IEEE international conference wearable computing, CA, USA, 1998. p. 132–39.

    Google Scholar 

  24. Kymissis J, Kendall C, Paradiso JA, Gershenfeld N. Parasitic power harvesting in shoes. In: Proceedings of the second IEEE international symposium on wearable computers (ISWC). Washington: IEEE Computer Society; 1998. p. 132–39.

    Google Scholar 

  25. Lee D, Noh H, Hyun D, Choy I. An improved MPPT converter using current compensation method for small scaled PV-applications. In: The 18th annual IEEE applied power electronics conference and exposition, vol. 1, 2003. p. 540–5.

    Google Scholar 

  26. Minami M, Morito T, Morikawa H, Aoyama T. Solar Biscuit: a battery-less wireless sensor network system for environmental monitoring applications. In: The 2nd international workshop on networked sensing systems, 2005.

    Google Scholar 

  27. Noguchi T, Togashi S, Nakamoto R. Short-current pulse based adaptive maximum-power-point tracking for photovoltaic power generation system. In: Proceedings of 2000 IEEE international symposium on industrial electronics. vol. 1, 2000. p. 157–62.

    Google Scholar 

  28. Ottman GK, Hofmann HF, Bhatt AC, Lesieutre GA. Adaptive piezoelectric energy harvesting circuit for wireless remote power supply. IEEE Trans Power Electron. 2002;17:669–76.

    Article  Google Scholar 

  29. Park C, Chou PH. PUMA: Power utility maximization for multiple-supply systems by a load-matching switch. In: Proceedings of international symposium on low power electronic design (ISLPED), August 9–11, 2004. p. 168–73.

    Google Scholar 

  30. Park C, Chou PH. AmbiMax: Efficient, autonomous energy harvesting system for multiple-supply wireless sensor nodes. In: Proceedings of 3rd annual IEEE communications society conference on sensor, mesh, and ad hoc communications and networks (SECON), September 25–28, 2006. p. 168–77.

    Google Scholar 

  31. Park C, Chou PH. Eco: Ultra-wearable and expandable wireless sensor platform. In: Proceedings of the third international workshop on body sensor networks (BSN 2006). Washington: IEEE Computer Society/Boston: MIT Media Lab; 2006. p. 162–5

    Google Scholar 

  32. Park C, No K, Chou PH. TurboCap: Batteryless, supercapacitor-based power supply for Mini-FDPM. In: Proceedings of 3rd european symposium on supercapacitors and applications (ESSCAP), Rome, Italy, November 2008.

    Google Scholar 

  33. Petreus D, Moga D, Galatus R, Munteanu RA. Modeling and sizing of supercapacitors. Adv Electr Comput Eng. 2008;8(2):15–22.

    Article  Google Scholar 

  34. Raghunathan V, Kansal A, Hsu J, Friedman J, Srivastava M. Design considerations for solar energy harvesting wireless embedded systems. In: Proceedings of the 4th international symposium on information processing in sensor networks (IPSN), April 25–27, 2005. p. 457–62.

    Google Scholar 

  35. Roundy S, Wright P. A piezoelectric vibration based generator for wireless electronics. J Smart Mater Struct. 2004;13(5):1131–42.

    Article  Google Scholar 

  36. Sera D, Teodorescu R, Rodriguez P. PV panel model based on datasheet values. In: IEEE international symposium on industrial electronics (ISIE), June 4–7, 2007. p. 2392–6.

    Google Scholar 

  37. Simjee F, Chou PH. Efficient charging of supercapacitors for extended lifetime of wireless sensor nodes. IEEE Trans Power Electron. 2008;23:1526–36.

    Article  Google Scholar 

  38. Williams C, Yates R. Analysis of a micro-electric generator for microsystems. In: Proceedings of eurosensors, 1995. p. 369–72.

    Google Scholar 

  39. Xiao W, Dunford W. A modified adaptive hill climbing MPPT method for photovoltaic power systems. In: 2004 35th annual IEEE power electronics specialists conference, vol. 3, June 20–25, 2004. p. 1957–63.

    Google Scholar 

  40. Yang H, Zhang Y. Analysis of supercapacitor energy loss for power management in environmentally powered wireless sensor nodes. IEEE Trans Power Electron. 2013;28(11): 5391–403.

    Article  Google Scholar 

  41. Zhu GR, Loo KH, Lai YM, Tse CK. Quasi-maximum efficiency point tracking for direct methanol fuel cell in DMFC/supercapacitor hybrid energy system. IEEE Trans Energy Convers. 2012;27(3):561–71.

    Article  Google Scholar 

  42. Zhu T, Zhong Z, Gu Y, He T, Zhang ZL. Leakage-aware energy synchronization for wireless sensor networks. In: The 8th annual international conference on mobile systems, applications, and services (MobiSys), June 15–18, 2010. p. 319–32.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pai H. Chou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kim, S., Chou, P.H. (2015). Energy Harvesting with Supercapacitor-Based Energy Storage. In: Lin, YL., Kyung, CM., Yasuura, H., Liu, Y. (eds) Smart Sensors and Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-14711-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14711-6_10

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14710-9

  • Online ISBN: 978-3-319-14711-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics