Overview of Uncertainty Quantification Methods

  • Francesco MontomoliEmail author
  • Mauro Carnevale
  • Antonio D’Ammaro
  • Michela Massini
  • Simone Salvadori
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)


This chapter presents an overview of the mathematical methods employed in Uncertainty Quantification (UQ) for turbomachinery. The UQ computational framework is defined and one method for each uncertainty propagation technique is presented and examined. Some examples are provided which underline the motivation of UQ analyses.


Sampling methods Quadrature methods Polynomial chaos expansions Spectral methods 


  1. 1.
    Oberkampf, W., Sindir, M., & Conlisk, A. (1998). Guide for the verification and validation of computational fluid dynamics simulations. American Institute of Aeronautics and Astronautics.Google Scholar
  2. 2.
    Diaconis, P., Holmes, S., & Montgomery, R. (2007). Dynamical bias in the coin toss. SIAM Review, 49(2), 211–235.CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    D’Ammaro, A., & Montomoli, F. (2013). Uncertainty quantification and film cooling. Computers and Fluids, 71, 320–326.CrossRefMathSciNetGoogle Scholar
  4. 4.
    Montomoli, F., Massini, M., & Salvadori, S. (2010). Geometrical uncertainty in turbomachinery: Tip gap and fillet radius. Computers and Fluids, 46, 362–368.CrossRefGoogle Scholar
  5. 5.
    Pecnik, R., Witteveen, J. A., & Iaccarino, G. (2011). Uncertainty quantification for laminar-turbulent transition prediction in RANS turbomachinery applications. In Proceedings of the 49th AIAA Aerospace Sciences Meeting.Google Scholar
  6. 6.
    Moser, R. (2009). Calibration, validation and uncertainty quantification for hypersonic reentry vehicles. APS Division of Fluid Dynamics Meeting Abstracts, (Vol. 1).Google Scholar
  7. 7.
    Montomoli, F., & Massini, M. (2013). Gas turbines and uncertainty quantification: impact of PDF tails on UQ predictions, the black swan. In ASME Turbo Expo 2013: Turbine Technical Conference and Exposition.Google Scholar
  8. 8.
    Marshall, G. (1989). Monte carlo methods for the solution of nonlinear partial differential equations. Computer Physics Communications, 56(1), 51–61.CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Walters, R. W., & Huyse, L. (2002). Uncertainty analysis for fluid mechanics with applications. Office, 1, 1–45.Google Scholar
  10. 10.
    Sàndor, Z., & Andras, P. (2004). Alternative sampling methods for estimating multivariate normal probabilities. Journal of Econometrics, 120(2), 207–234.CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Helton, J., Johnson, J., Sallaberry, C., & Storlie, C. (2006). Survey of sampling-based methods for uncertainty and sensitivity analysis. Reliability Engineering and System Safety, 91(10), 1175–1209.CrossRefGoogle Scholar
  12. 12.
    Helton, J., & Davis, F. (2003). Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. Reliability Engineering and System Safety, 81(1), 23–69.CrossRefGoogle Scholar
  13. 13.
    Xiu, D. (2010). Numerical methods for stochastic computations: A spectral method approach. Princeton: Princeton University Press.Google Scholar
  14. 14.
    Olver, F., Lozier, D., Boisvert, R., & Clark, C. (2010). NIST handbook of mathematical functions. Cambridge: Cambridge University Press.Google Scholar
  15. 15.
    Press, W. H. (2007). Numerical recipes: The art of scientific computing (3rd ed.). Cambridge: Cambridge University Press.Google Scholar
  16. 16.
    Wiener, N. (1938). The homogeneous chaos. American Journal of Mathematics, 60(4), 897–936.CrossRefMathSciNetGoogle Scholar
  17. 17.
    Ghanem, R., & Spanos, P. (2003). Stochastic finite elements: A spectral approach. Dover: Dover Publications.Google Scholar
  18. 18.
    Xiu, D., & Karniadakis, G. E. (2002). The wiener-askey polynomial chaos for stochastic differential equations. SIAM Journal on Scientific Computing, 24, 619–644.CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Szego, G. (1959). Orthogonal polynomials (Vol. 23). New York: American Mathematical Society.Google Scholar
  20. 20.
    Sansone, G. (1991). Orthogonal functions (Vol. 9). Dover: Courier Dover Publications.Google Scholar
  21. 21.
    Devroye, L., & Devroye, L. (1986). Non-uniform random variate generation (Vol. 4). New York: Springer.CrossRefzbMATHGoogle Scholar
  22. 22.
    Kumar, Y., Li, J., Talarico, C., & Wang, J. (2005). A probabilistic collocation method based statistical gate delay model considering process variations and multiple input switching. IEEE Computer Society, 2, 770–775.Google Scholar
  23. 23.
    Hosder, S., Walters, R., & Perez, R. (2006). A non-intrusive polynomial chaos method for uncertainty propagation in CFD simulations (Vol. 14, pp. 10649–10667).Google Scholar
  24. 24.
    Eldred, M. S., Webster, C. G., & G, C. P. (2008). Evaluationa of non-intrusive approaches for wiener-askey generalized polynomial chaos. In: Proceedings of the 10th AIAA Non-Deterministic Approaches Conference, Number AIAA-2008-1892 (p. 189). Schaumburg, IL: AIAA.Google Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Francesco Montomoli
    • 1
    Email author
  • Mauro Carnevale
    • 1
  • Antonio D’Ammaro
    • 2
  • Michela Massini
    • 1
  • Simone Salvadori
    • 3
  1. 1.Imperial College of LondonLondonUK
  2. 2.University of CambridgeCambridgeUK
  3. 3.University of FlorenceFlorenceItaly

Personalised recommendations