Advertisement

Uncertainty Quantification Applied to Gas Turbine Components

  • Francesco MontomoliEmail author
  • Mauro Carnevale
  • Antonio D’Ammaro
  • Michela Massini
  • Simone Salvadori
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

The previous chapters analyzed the level of uncertainty in different gas turbine components, how this affects the performance such as life and fuel consumption and the numerical uncertainty introduced by the CFD modelling itself. This chapter will show how Uncertainty Quantification techniques are used nowadays in CFD to study the impact of such manufacturing errors, pointing out, for each component, what has been learned and/or discovered using UQ and which methodology has been used. UQ is mainly considered in gas turbine in order to add an “error bar” to the CFD predictions. However we would like to show that one of the most interesting application of UQ is to understand the impact of variations from a design point of view and to “investigate” the reason of a problem. A very good example is shown by Seshadri et al. [12] where the authors used UQ to find the real reason of disagreement between CFD and experiments on NASA rotor 37 test case. Even if it was speculated for several years that a possible reason was the leakage in front of the rotor, Seshadri was able to quantify the impact of uncertainty due to the leakage.

Keywords

Sensitivity study Polynomial chaos Adjoint methods Compressors Turbines 

References

  1. 1.
    Goodhand, M. N., Miller, R. J., & Lung, H. W. (2012). The sensitivity of 2D compressor incidence range to in-service geometric variation. Proceedings of the ASME Turbo Expo, 8, 159–170.Google Scholar
  2. 2.
    Giebmanns, A., Backhaus, J., & Frey, C. (2013). Compressor leading edge sensitivities and analysis with an adjoint flow solver. Proceedings of the ASME Turbo Expo, 6A.Google Scholar
  3. 3.
    Lange, A., Voigt, M., & Vogeler, K. (2012). Principal component analysis on 3D scanned compressor blades for probabilistic CFD simulation. In 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 2012.Google Scholar
  4. 4.
    Seshadri, P., Parks, G., & Jarrett, J. (2013). Towards robust design of axial compressors with uncertainty quantification. In Collection of Technical Papers—AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference.Google Scholar
  5. 5.
    Seshadri, P., Shahpar, S., & Parks, G. T. (2014). Robust compressor blades for desensitizing operational tip clearance variations. In Proceedings of ASME Turbo Expo 2014: Turbine Technical Conference and Exposition GT2014 (Vol. 1). June 16–20, 2014.Google Scholar
  6. 6.
    Goodhand, M. N., & Miller, R. J. (June 22, 2011). The impact of real geometries on three-dimensional separations in compressors. Journal of Turbomachinery, 134(2), 021007. doi: 10.1115/1.4002990.
  7. 7.
    Lange, A., Voigt, M., & Vogeler, K. (2010). Probabilistic CFD simulation of a high-pressure compressor stage taking manufacturing variability into account. Proceedings of the ASME Turbo Expo, 6, 617–628.Google Scholar
  8. 8.
    Lange, A., Voigt, M., Vogeler, K., Schrapp, H., Johann, E., & Gümmer, V. (January 03, 2012). Impact of manufacturing variability and nonaxisymmetry on high-pressure compressor stage performance. Journal of Engineering for Gas Turbines and Power, 134(3), 032504. doi: 10.1115/1.4004404.
  9. 9.
    Lange, A., Voigt, M., Vogeler, K., Schrapp, H., Johann, E., & Gümmer, V. (September 24, 2012). Impact of manufacturing variability on multistage high-pressure compressor performance, Journal of Engineering for Gas Turbines and Power, 134(11), 112601. doi: 10.1115/1.4007167.
  10. 10.
    Lange, A., Vogeler, K., & Gümmer, V. (2009). Introduction of a parameter based compressor blade model for considering measured geometry uncertainties in numerical simulation. Proceedings of the ASME Turbo Expo, 6, 1113–1123.Google Scholar
  11. 11.
    Ghisu, T., Parks, G. T., & Jarrett, J. P. (2010). Adaptive polynomial chaos for gas turbine compression systems performance analysis. AIAA Journal, 48(6), 1156–1170.CrossRefGoogle Scholar
  12. 12.
    Seshadri, P., Shahpar, S., & Parks, G. T. (2014). Robust compressor blades for desensitizing operational tip clearance variations. In Proceedings of ASME Turbo Expo 2014: Turbine Technical Conference and Exposition GT2014 (Vol. 38). June 16–20, 2014.Google Scholar
  13. 13.
    Smith, W. R. (2002). Models for solidification and splashing in laser percussion drilling. SIAM Journal on Applied Mathematics, 62(6), 1899–1923.CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Montomoli, F., D’Ammaro, A., & Uchida, S. (March 25, 2013). Uncertainty quantification and conjugate heat transfer: A stochastic analysis. Journal of Turbomachinery, 135(3), 031014. doi: 10.1115/1.4007516.
  15. 15.
    Bunker, R. S. (2009). The effects of manufacturing tolerances on gas turbine cooling. Journal of Turbomachinery, 131(4), 1–11.CrossRefGoogle Scholar
  16. 16.
    Montomoli, F., & Massini, M. (2013). Gas turbines and uncertainty quantification: Impact of PDF tails on UQ predictions, the Black Swan. Proceedings of the ASME Turbo Expo, 3C.Google Scholar
  17. 17.
    Montomoli, F., Massini, M., Maceli, N., Cirri, M., Lombardi, L., Ciani, A., et al. (April 02, 2010). Interaction of wheelspace coolant and main flow in a new aeroderivative low pressure turbine. Journal of Turbomachinery, 132(3), 031013. doi: 10.1115/1.3195036.
  18. 18.
    Montomoli, F., & Massini, M. (2013). Gas turbines and uncertainty quantification: Impact of PDF tails on UQ predictions, the Black Swan. In ASME IGTI 2013.Google Scholar
  19. 19.
    Montomoli, F., Amirante, D., Hills, N., Shahpar, S., Massini, M. (October 28, 2014). Uncertainty quantification, rare events, and mission optimization: Stochastic variations of metal temperature during a transient. Journal of Engineering for Gas Turbines and Power, 137(4), 042101. doi:  10.1115/1.4028546
  20. 20.
    Montomoli, F., Massini, M., & Salvadori, S. (2011). Geometrical uncertainty and film cooling: Fillet radii. Journal of Turbomachinery, 134(1).Google Scholar
  21. 21.
    Montomoli, F., Massini, M., & Salvadori, S. (July, 2011). Geometrical uncertainty in turbomachinery: Tip gap and fillet radius. Computers and Fluids, 46(1), 362–368. doi: 10.1016/j.compfluid.2010.11.031
  22. 22.
    Gritsch, M., Schulz, A., & Wittig, S. (1998). Adiabatic wall effectiveness measurements of film-cooling holes with expanded exits. Journal of Turbomachinery, 120(3), 549–556.CrossRefGoogle Scholar
  23. 23.
    Moeckel, C. W., Darmofal, D. L., & Kingston, T. R. (2007). Toleranced designs of cooled turbine blades through probabilistic thermal analysis of manufacturing variability. Proceedings of the ASME Turbo Expo, 5, 1179–1191.Google Scholar
  24. 24.
    Jovanovic, M. B., de Lange, H. C., & van Steenhoven, A. A. (2008). Effect of hole imperfection on adiabatic film cooling effectiveness. International Journal of Heat and Fluid Flow, 29(2), 377–386.Google Scholar
  25. 25.
    Montomoli, F., D’Ammaro, A., & Uchida, S. (2012). Uncertainty quantification and conjugate heat transfer: A stochastic analysis. Proceedings of the ASME Turbo Expo, 4, 99–108.Google Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Francesco Montomoli
    • 1
    Email author
  • Mauro Carnevale
    • 1
  • Antonio D’Ammaro
    • 2
  • Michela Massini
    • 1
  • Simone Salvadori
    • 3
  1. 1.Imperial College of LondonLondonUK
  2. 2.University of CambridgeCambridgeUK
  3. 3.University of FlorenceFlorenceItaly

Personalised recommendations