Manufacturing and in Service Uncertainty and Impact on Life and Performance

  • Francesco MontomoliEmail author
  • Mauro Carnevale
  • Antonio D’Ammaro
  • Michela Massini
  • Simone Salvadori
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)


This chapter highlights the impact of manufacturing errors on aircraft engines performance. The reader should use this chapter to identify the regions where Uncertainty Quantification should be used to improve the performance of a gas turbine.


Manufacturing errors Operational variations In service degradation 


  1. 1.
    Paniagua, G., Dénos, R., & Almeida, S. (2004). Effect of the hub endwall cavity flow on the flow-field of a transonic high-pressure turbine. Journal of Turbomachinery, 126(4), 578–586.CrossRefGoogle Scholar
  2. 2.
    Dudgeon, E.H. (1994). Agard, agard-AR-320.Google Scholar
  3. 3.
    Schnell, R., Lengyel-Kampmann, T., & Nicke, E. (2014). On the impact of geometric variability on fan aerodynamic performance, unsteady blade row interaction, and its mechanical characteristics. Journal of Turbomachinery, 136, 091005-1.CrossRefGoogle Scholar
  4. 4.
    Ghenaiet, A. (2012). Study of sand particle trajectories and erosion into the first compression stage of a turbofan. Journal of Turbomachinery, 134(5).Google Scholar
  5. 5.
    Tabakoff, W. (1986). Study of single stage axial flow compressor performance deterioration. American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FED, 37, 95–100.Google Scholar
  6. 6.
    Balan, C., & Tabakoff, W. (1984). Axial flow compressor performance deterioration. AIAA Paper.Google Scholar
  7. 7.
    Ghenaiet, A., Tan, S. C., & Elder, R. L. (2005). Prediction of an axial turbomachine performance degradation due to sand ingestion. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 219(4), 273–287.Google Scholar
  8. 8.
    Klinner, J., Hergt, A., & Willert, C. (2014). Experimental investigation of the transonic flow around the leading edge of an eroded fan airfoil. Experiments in Fluids, 55(9).Google Scholar
  9. 9.
    Giebmanns, A., Backhaus, J., & Frey, C. (2013). Compressor leading edge sensitivities and analysis with an adjoint flow solver. In Proceedings of the ASME Turbo Expo (Vol. 6 A).Google Scholar
  10. 10.
    Giebmanns, A., Schnell, R., & Steinert, W. (2012). Analyzing and optimizing geometrically degraded transonic fan blades by means of 2D and 3D simulations and cascade measurements. In Proceedings of the ASME Turbo Expo (Vol. 8, pp. 279–288).Google Scholar
  11. 11.
    Goodhand, M. N., Miller, R. J., & Lung, H. W. (2012). The sensitivity of 2D compressor incidence range to in-service geometric variation. In Proceedings of the ASME Turbo Expo (Vol. 8, pp. 159–170).Google Scholar
  12. 12.
    Goodhand, M. N., & Miller, R. J. (2011). Compressor leading edge spikes: A new performance criterion. Journal of Turbomachinery, 133(2).Google Scholar
  13. 13.
    Elmstrom, M. E., Millsaps, K. T., & Hobson, G. V. (2011). Impact of nonuniform leading edge coatings on the aerodynamic performance of compressor airfoils. Journal of Turbomachinery, 133(4).Google Scholar
  14. 14.
    Wheeler, A. P. S., Sofia, A., & Miller, R. J. (2009). The effect of leading-edge geometry on wake interactions in compressors. Journal of Turbomachinery, 131(4), 1–8.CrossRefGoogle Scholar
  15. 15.
    Lamb, C. T., & Darmofal, D. L. (2004). Performance-based geometric tolerancing of compressor blades. In Proceedings of the ASME Turbo Expo (Vol. 5 A, pp. 203–210).Google Scholar
  16. 16.
    Garzon, V. E., & Darmofal, D. L. (2004). On the aerodynamic design of compressor airfoils for robustness under geometric uncertainty. Proceedings of the ASME Turbo Expo (Vol. 5 A, pp. 191–202).Google Scholar
  17. 17.
    Caguiat, D. E. (2003). Rolls royce/allison 501-K gas turbine antifouling compressor coatings evaluation. Journal of Turbomachinery, 125(3), 482–488.CrossRefGoogle Scholar
  18. 18.
    Sakulkaew, S., Tan, C. S., & Donahoo, E. (2013). Compressor efficiency variation with rotor tip gap from vanishing to large clearance. Journal of Turbomachinery, 135(3).Google Scholar
  19. 19.
    Freeman, C. (1985). Tip clearance effects in axial turbomachines. In C. H. Sieverding (Ed.), VKI LS 1985-05, April 15–18. Von Karman Institute for Fluid Dynamics.Google Scholar
  20. 20.
    Suder, K. L., Chima, R. V., & Strazisar, A. J. (1995). The effect of adding roughness and thickness to a transonic axial compressor rotor. Transactions—ASME: Journal of Turbomachinery, 117(4), 491–505.Google Scholar
  21. 21.
    Gbadebo, S. A., Hynes, T. P., & Cumpsty, N. A. (2004). Influence of surface roughness on three-dimensional separation in axial compressors. In Proceedings of the ASME Turbo Expo 2004 (Vol. 5 A, pp. 471–481).Google Scholar
  22. 22.
    Syverud, E., Brekke, O., & Bakken, L. E. (2007). Axial compressor deterioration caused by saltwater ingestion. Journal of Turbomachinery, 129(1), 119–126.CrossRefGoogle Scholar
  23. 23.
    Morini, M., Pinelli, M., Spina, P. R. (2010). Computational fluid dynamics simulation of fouling on axial compressor stages. Journal of Engineering for Gas Turbines and Power, 132(7).Google Scholar
  24. 24.
    Curlett, B. P. (1991). The aerodynamic effect of fillet radius in a low speed compressor cascade. NASA Technical Memorandum, 105347.Google Scholar
  25. 25.
    Salvadori, S., Montomoli, F. & Martelli, F. (2011). Aerothermal study of the unsteady flow field in a transonic gas turbine with inlet temperature distortions. Journal of Turbomachinery, 133(3).Google Scholar
  26. 26.
    Montomoli, F., Massini, M., & Salvadori, S. (2011). Geometrical uncertainty in turbomachinery: tip gap and fillet radius. Computers & Fluids, 46(1), 362–368.CrossRefzbMATHGoogle Scholar
  27. 27.
    Massini, M., Miller, R. J., & Hodson, H. P. (2011). A new intermittent aspirated probe for the measurement of stagnation quantities in high temperature gases. Journal of Turbomachinery, 133(4) .Google Scholar
  28. 28.
    Ames, F. E., & Moffat, R. J. (1990). Effects of simulated combustor turbulence on boundary layer heat transfer. American Society of Mechanical Engineers, Heat Transfer Division, (Publication) HTD, 138, 11–17.Google Scholar
  29. 29.
    Krishnamoorthy, V., Pai, B. R., & Sukhatme, S. P. (1988). Influence of upstream flow conditions on the heat transfer to nozzle guide vanes. Journal of Turbomachinery, 110(3), 412–416.CrossRefGoogle Scholar
  30. 30.
    Krishnamoorthy, V., & Sukhatme, S. P. (1989). Effect of free-stream turbulence on gas turbine blade heat transfer. Journal of Turbomachinery, 111(4), 497–501.CrossRefGoogle Scholar
  31. 31.
    Mehendale, A. B., Ekkad, S. V., & Han, J. (1994). Mainstream turbulence effect on film effectiveness and heat transfer coefficient of a gas turbine blade with air and CO2 film injection. International Journal of Heat and Mass Transfer, 37(17), 2707–2714.CrossRefGoogle Scholar
  32. 32.
    Hall, B. F., Chana, K. S., & Povey, T.(2014). Design of a nonreacting combustor simulator with swirl and temperature distortion with experimental validation. Journal of Engineering for Gas Turbines and Power, 136(8).Google Scholar
  33. 33.
    Salvadori, S., Riccio, G., & Insinna, M. (2012). Analysis of combustor/vane interaction with decoupled and loosely coupled approaches. In Proceedings of the ASME Turbo Expo (Vol. 8, pp. 2641–2652).Google Scholar
  34. 34.
    Bunker, R. S. (2009). The effects of manufacturing tolerances on gas turbine cooling. Journal of Turbomachinery, 131(4), 1–11.CrossRefGoogle Scholar
  35. 35.
    Moeckel, C. W., Darmofal, D. L., and Kingston, T. R. (2007) Toleranced designs of cooled turbine blades through probabilistic thermal analysis of manufacturing variability. In Proceedings of the ASME Turbo Expo (Vol. 5, pp. 1179–1191).Google Scholar
  36. 36.
    Sundaram, N., & Thole, K. A. (2007). Effects of surface deposition, hole blockage, and thermal barrier coating spallation on vane end wall film cooling. Journal of Turbomachinery, 129(3), 599–607.CrossRefGoogle Scholar
  37. 37.
    Bohn, D., & Krewinkel, R. (2006). The effects of unintentional deviations due to manufacturing of cooling holes and operation on transpiration cooling efficiency. In Proceedings of the ASME Turbo Expo, (Vol. 3, part A, pp. 689–699).Google Scholar
  38. 38.
    Jovanovic, M. B., de Lange, H. C., & van Steenhoven, A. A. (2008). Effect of hole imperfection on adiabatic film cooling effectiveness. International Journal of Heat and Fluid Flow, 29(2), 377–386.CrossRefGoogle Scholar
  39. 39.
    Jovanovic, M. B., de Lange, H. C., & van Steenhoven, A. A. (2006). Influence of hole imperfection on jet cross flow interaction. International Journal of Heat and Fluid Flow, 27(1), 42–53.CrossRefGoogle Scholar
  40. 40.
    Jovanovic, M. B., De Lange, H. C., & Van Steenhoven, A. A. (2005). Influence of laser drilling imperfection on film cooling performances. In Proceedings of the ASME Turbo Expo (Vol. 3, part A, pp. 285–292).Google Scholar
  41. 41.
    Saumweber, C., & Schulz, A. (2012). Effect of geometry variations on the cooling performance of fan-shaped cooling holes. Journal of Turbomachinery, 134(6).Google Scholar
  42. 42.
    Larson, F., R., & Miller, J. (1952). A time temperature relationship for rupture and creep stresses. Transaction of ASME, 74, 765–775.Google Scholar
  43. 43.
    Vázquez, R., & Torre, D. (2013). The effect of surface roughness on efficiency of low pressure turbines. In Proceedings of the ASME Turbo Expo (Vol. 6 A).Google Scholar
  44. 44.
    Hourmouziadis, J. (1989). Aerodynamic design of low pressure turbines. AGARD Lecture Series (pp. 8.1–8.40).Google Scholar
  45. 45.
    Montomoli, F., Hodson, H., & Haselbach, F. (2010). Effect of roughness and unsteadiness on the performance of a new low pressure turbine blade at low Reynolds numbers. Journal of Turbomachinery, 132(3).Google Scholar
  46. 46.
    Zhou, C., Hodson, H., & Himmel, C. (2013). The effects of trailing edge thickness on the losses of ultra-high lift LP turbine blades. In Proceedings of the ASME Turbo Expo (Vol. 6 A).Google Scholar
  47. 47.
    Torre, D., Vázquez, R., & Armañanzas, L. (2013). The effect of airfoil thickness on the efficiency of low-pressure turbines. Journal of Turbomachinery, 136(5).Google Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Francesco Montomoli
    • 1
    Email author
  • Mauro Carnevale
    • 1
  • Antonio D’Ammaro
    • 2
  • Michela Massini
    • 1
  • Simone Salvadori
    • 3
  1. 1.Imperial College of LondonLondonUK
  2. 2.University of CambridgeCambridgeUK
  3. 3.University of FlorenceFlorenceItaly

Personalised recommendations