Connection Forms for Beating the Heart

LV Mechanics Challenge (Methods)
  • Arthur Mensch
  • Emmanuel Piuze
  • Lucas Lehnert
  • Adrianus J. Bakermans
  • Jon Sporring
  • Gustav J. Strijkers
  • Kaleem Siddiqi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8896)

Abstract

We combine recent work on modeling cardiac mechanics using a finite volume method with the insight that heart wall myofiber orientations exhibit a particular volumetric geometry. In our finite volume mechanical simulation we use Maurer-Cartan one-forms to add a geometrical consistency term to control the rate at which myofiber orientation changes in the direction perpendicular to the heart wall. This allows us to estimate material properties related to both the passive and active parameters in our model. We have obtained preliminary results on the 4 canine datasets of the 2014 mechanics challenge using the FEBio software suite. In ongoing work we are validating and improving the model using rat heart (ex-vivo DTI and in-vivo tagging) MRI datasets, from which we have estimated strain tensors.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wang, V.Y., Lam, H., Ennis, D.B., Cowan, B.R., Young, A.A., Nash, M.P.: Modelling passive diastolic mechanics with quantitative mri of cardiac structure and function. Medical Image Analysis 13(5), 773–784 (2009)CrossRefGoogle Scholar
  2. 2.
    Holzapfel, G.A., Ogden, R.W.: Biomechanical Modelling at the Molecular, Cellular, and Tissue Levels, vol. 508. Springer (2009)Google Scholar
  3. 3.
    Rossi, S., Ruiz-Baier, R., Pavarino, L.F., Quarteroni, A.: Orthotropic active strain models for the numerical simulation of cardiac biomechanics. International Journal for Numerical Methods in Biomedical Engineering 28(6–7), 761–788 (2012)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Savadjiev, P., Strijkers, G.J., Bakermans, A.J., Piuze, E., Zucker, S.W., Siddiqi, K.: Heart wall myofibers are arranged in minimal surfaces to optimize organ function. Proc. Natl. Acad. Sci. USA 109(24), 9248–9253 (2012)CrossRefGoogle Scholar
  5. 5.
    Wang, H., Gao, H., Luo, X., Berry, C., Griffith, B., Ogden, R., Wang, T.: Structure-based finite strain modelling of the human left ventricle in diastole. International Journal for Numerical Methods in Biomedical Engineering 29(1), 83–103 (2013)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Irving, G., Schroeder, C., Fedkiw, R.: Volume conserving finite element simulations of deformable models. ACM Transactions on Graphics (TOG) 26, 13 (2007)CrossRefGoogle Scholar
  7. 7.
    Sifakis, E., Barbic, J.: Fem simulation of 3d deformable solids: a practitioner’s guide to theory, discretization and model reduction. In: ACM SIGGRAPH 2012 Courses, p. 20. ACM (2012)Google Scholar
  8. 8.
    Niederer, S., Hunter, P., Smith, N.: A quantitative analysis of cardiac myocyte relaxation: a simulation study. Biophysical Journal 90(5), 1697–1722 (2006)CrossRefGoogle Scholar
  9. 9.
    Piuze, E., Sporring, J., Siddiqi, K.: Moving frames for heart fiber geometry. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds.) IPMI 2013. LNCS, vol. 7917, pp. 524–535. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  10. 10.
    Streeter, D., Bassett, D.: An engineering analysis of myocardial fiber orientation in pig’s left ventricle in systole. The Anatomical Record 155(4), 503–511 (2005)CrossRefGoogle Scholar
  11. 11.
    Bruurmijn, L.C.M., Kause, H.B., Filatova, O.G., Duits, R., Fuster, A., Florack, L.M.J., van Assen, H.C.: Myocardial deformation from local frequency estimation in tagging mri. In: Ourselin, S., Rueckert, D., Smith, N. (eds.) FIMH 2013. LNCS, vol. 7945, pp. 284–291. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)MATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Arthur Mensch
    • 1
  • Emmanuel Piuze
    • 1
  • Lucas Lehnert
    • 1
  • Adrianus J. Bakermans
    • 2
  • Jon Sporring
    • 3
  • Gustav J. Strijkers
    • 2
  • Kaleem Siddiqi
    • 1
  1. 1.School of Computer Science and Centre for Intelligent MachinesMcGill UniversityMontrealCanada
  2. 2.Academic Medical Center, University of Amsterdam Medical Center and Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenNetherlands
  3. 3.Department of Computer ScienceUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations