Skip to main content

Fully-Coupled Electromechanical Simulations of the LV Dog Anatomy Using HPC: Model Testing and Verification

  • 2124 Accesses

Part of the Lecture Notes in Computer Science book series (LNIP,volume 8896)

Abstract

Verification of electro-mechanic models of the heart require a good amount of reliable, high resolution, thorough in-vivo measurements. The detail of the mathematical models used to create simulations of the heart beat vary greatly. Generally, the objective of the simulation determines the modeling approach. However, it is important to exactly quantify the amount of error between the various approaches that can be used to simulate a heart beat by comparing them to ground truth data. The more detailed the model is, the more computing power it requires, we therefore employ a high-performance computing solver throughout this study. We aim to compare models to data measured experimentally to identify the effect of using a mathematical model of fibre orientation versus the measured fibre orientations using DT-MRI. We also use simultaneous endocardial stimuli vs an instantaneous myocardial stimulation to trigger the mechanic contraction. Our results show that synchronisation of the electrical and mechanical events in the heart beat are necessary to create a physiological timing of hemodynamic events. Synchronous activation of all of the myocardium provides an unrealistic timing of hemodynamic events in the cardiac cycle. Results also show the need of establishing a protocol to quantify the zero-pressure configuration of the left ventricular geometry to initiate the simulation protocol; however, the predicted zero-pressure configuration of the same geometry was different, depending on the origin of the fibre field employed.

Keywords

  • High-Performance Computing (HPC)
  • Electromechanical simulations
  • Canine model
  • Ground-truth data
  • Verification

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-14678-2_12
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-14678-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   69.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sermesant, M., Moireau, P., Camara, O., Sainte-Marie, J., et al.: Cardiac function estimation from mri using a heart model and data assimilation: advances and difficulties. Medical Image Analysis 10(4), 642–656 (2006)

    CrossRef  Google Scholar 

  2. Kerckhoffs, R., McCulloch, A., Omens, J., Mulligan, L.: Effects of biventricular pacing and scar size in a computational model of the failing heart with left bundle branch block. Medical Image Analysis 13(2), 362–369 (2009)

    CrossRef  Google Scholar 

  3. Trayanova, N., Constantino, J., Gurev, V.: Electromechanical models of the ventricles. American Journal of Physiology 301, 279–286 (2011)

    Google Scholar 

  4. Niederer, S., Kerfoot, E., Benson, A., Bernabeu, M., et al.: Constitutive modelling of passive my- ocardium: a structurally based framework for material characterization. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369(1954), 4331–4351 (2009)

    CrossRef  Google Scholar 

  5. Camara, O., Sermesant, M., Lamata, P., Wang, L., et al.: Inter-model consistency and complementarity: learning from ex-vivo imaging and electrophysiological data towards an integrated understanding of cardiac physiology. Progress in Biophysics and Molecular Biology 107(1), 122–133 (2011)

    CrossRef  Google Scholar 

  6. Tobon-Gomez, C., Craene, M.D., McLeod, K., Tautz, L., et al.: Benchmarking framework for myocardial tracking and deformation algorithms: an open access database. Medical Image Analysis 17(6), 632–648 (2013)

    CrossRef  Google Scholar 

  7. Wang, V., Lam, H., Ennis, D., Cowan, B., Young, A., Nash, M.: Modelling passive diastolic mechanics with quantitative MRI of cardiac structure and function. Med. Image Anal. 13(5), 773–784 (2009)

    CrossRef  Google Scholar 

  8. Streeter, D.: Gross morphology and fibrous structure of the heart. In: Handbook of Physiology: The Cardiovascular System, vol. 1, pp. 61–112. Oxford University Press (1979).

    Google Scholar 

  9. Vázquez, M., Arís, R., Houzeaux, G., Aubry, R., et al.: A massively parallel computational electrophysiology model of the heart. International Journal for Numerical Methods in Biomedical Engineering 27(12), 1991–1929 (2011)

    CrossRef  Google Scholar 

  10. Fitzhugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophysical Journal 1, 445–466 (1961)

    CrossRef  Google Scholar 

  11. ten Tusscher, K.H.W.J., Panfilov, A.V.: Alternans and spiral breakup in a human ventricular tissue model. Am. J. Physiol. Heart Circ. Physiol. 291(3), H1088–H1100 (2006)

    CrossRef  Google Scholar 

  12. Holzapfel, G., Ogden, R.: Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 367(1902), 3445–3475 (2009)

    CrossRef  MathSciNet  MATH  Google Scholar 

  13. Lafortune, P., Arís, R., Vázquez, M., Houzeaux, G.: Coupled electromechanical model of the heart: parallel finite element formulation. International Journal for Numerical Methods in Biomedical Engineering 28, 72–86 (2012)

    CrossRef  MathSciNet  MATH  Google Scholar 

  14. Hunter, P., McCulloch, A., ter Keurs, H.: Modelling the mechanical properties of cardiac muscle. Progress in Biophysics and Molecular Biology 69(2), 289–331 (1998)

    CrossRef  Google Scholar 

  15. Flaim, S.N., Giles, W.R., McCulloch, A.: Contributions of sustained ina and ikv4.3 to transmural heterogeneity of early repolarization and arrhythmogenesis in canine left ventricular myocytes. Am. J. Physiol. Heart Circ. Physiol. 291, H2617–H2629 (2006)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jazmin Aguado-Sierra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Aguado-Sierra, J. et al. (2015). Fully-Coupled Electromechanical Simulations of the LV Dog Anatomy Using HPC: Model Testing and Verification. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds) Statistical Atlases and Computational Models of the Heart - Imaging and Modelling Challenges. STACOM 2014. Lecture Notes in Computer Science(), vol 8896. Springer, Cham. https://doi.org/10.1007/978-3-319-14678-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14678-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14677-5

  • Online ISBN: 978-3-319-14678-2

  • eBook Packages: Computer ScienceComputer Science (R0)