Abstract
Computational models are valuable tools for understanding the mechanical function of the heart. In particular, the prospect of doing patient–specific simulations of heart function may have a significant impact on clinical practice. However, patient–specific simulations give rise to severe challenges related to model choices, parameter fitting and model validation. In this study we investigate parameter variability in a model of left ventricular mechanics applied to four different canine heart cases. The mechanics is modeled by a transversely isotropic active strain model, with two parameters adjusted to fit end diastolic and end systolic pressures and volumes. The chosen model is able to accurately reproduce these data, and enables very efficient parameter fitting. Visual inspection of the resulting deformed geometries also shows a reasonable match with the image based reference.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aguado-Sierra, J., Krishnamurthy, A., Villongco, C., Chuang, J., Howard, E., Gonzales, M.J., Omens, J., Krummen, D.E., Narayan, S., Kerckhoffs, R.C.P., McCulloch, A.D.: Patient-specific modeling of dyssynchronous heart failure: A case study. Progress in Biophysics and Molecular Biology 107(1), 147–155 (2011)
Alford, P.W., Feinberg, A.W., Sheehy, S.P., Parker, K.K.: Biohybrid thin films for measuring contractility in engineered cardiovascular muscle. Biomaterials 31(13), 3613–3621 (2010)
Amestoy, P.R., Duff, I.S., L’Excellent, J.-Y., Koster, J.: MUMPS: a general purpose distributed memory sparse solver. In: Sørevik, T., Manne, F., Gebremedhin, A.H., Moe, R. (eds.) PARA 2000. LNCS, vol. 1947, pp. 121–130. Springer, Heidelberg (2001)
Arnold, D.N., Brezzi, F., Fortin, M.: A stable finite element for the stokes equations. Calcolo 21(4), 337–344 (1984)
Bonet, J., Wood, R.: Nonlinear continuum mechanics for finite element analysis. Cambridge University Press (1997)
Feinberg, A.W., Feigel, A., Shevkoplyas, S.S., Sheehy, S., Whitesides, G.M., Parker, K.K.: Muscular thin films for building actuators and powering devices. Science 317(5843), 1366–1370 (2007)
Geuzaine, C., Remacle, J.-F.: Gmsh: A three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Meth. Eng. 11(79), 1309–1331 (2009)
Holzapfel, G.A., Ogden, R.W.: Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 367(1902), 3445–3475 (2009)
Humphrey, J.D., Yin, F.C.P.: On constitutive relations and finite deformations of passive cardiac tissue: I. a pseudostrain-energy function. Journal of Biomechanical Engineering 109(4), 298–304 (1987)
Kuznetsov, Y.: Elements of applied bifurcation theory, vol. 112. Springer (1998)
LeGrice, I., Hunter, P., Young, A., Smaill, B.: The architecture of the heart: a data-based model. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 359(1783), 1217–1232 (2001)
Logg, A., Mardal, K.-A., Wells, G.N., et al.: Automated Solution of Differential Equations by the Finite Element Method. Springer (2012)
Nardinocchi, P., Teresi, L.: On the active response of soft living tissues. Journal of Elasticity 88(1), 27–39 (2007)
Niederer, S.A., Plank, G., Chinchapatnam, P., Ginks, M., Lamata, P., Rhode, K.S., Rinaldi, C.A., Razavi, R., Smith, N.P.: Length-dependent tension in the failing heart and the efficacy of cardiac resynchronization therapy. Cardiovascular Research 89(2), 336–343 (2011)
Pezzuto, S., Ambrosi, D., Quarteroni, A.: An orthotropic active-strain model for the myocardium mechanics and its numerical approximation. European Journal of Mechanics-A/Solids (2014)
Remacle, J.-F., Geuzaine, C., Compère, G., Marchandise, E.: High-quality surface remeshing using harmonic maps. International Journal for Numerical Methods in Engineering 83(4), 403–425 (2010)
Rumpel, T., Schweizerhof, K.: Volume-dependent pressure loading and its influence on the stability of structures. International Journal for Numerical Methods in Engineering 56(2), 211–238 (2003)
Streeter, D.D., Spotnitz, H.M., Patel, D.P., Ross, J., Sonnenblick, E.H.: Fiber orientation in the canine left ventricle during diastole and systole. Circulation Research 24(3), 339–347 (1969)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Gjerald, S., Hake, J., Pezzuto, S., Sundnes, J., Wall, S.T. (2015). Patient–Specific Parameter Estimation for a Transversely Isotropic Active Strain Model of Left Ventricular Mechanics. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds) Statistical Atlases and Computational Models of the Heart - Imaging and Modelling Challenges. STACOM 2014. Lecture Notes in Computer Science(), vol 8896. Springer, Cham. https://doi.org/10.1007/978-3-319-14678-2_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-14678-2_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-14677-5
Online ISBN: 978-3-319-14678-2
eBook Packages: Computer ScienceComputer Science (R0)