Advertisement

A Fuzzy System for Three-Factor, Non-textual Authentication

  • James Stockdale
  • Alex Vakaloudis
  • Juan Manuel Escaño
  • Jian Liang
  • Brian Cahill
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 591)

Abstract

As text-based authentication has had its critiques, non-textual techniques have been suggested throughout the last two decades. However, it is only lately, with the wide-spread adoption of smartphones and tablet devices that they have found a compelling application. Non-textual authentication may be faster and more secure and it also introduces a new paradigm for the authentication decision. We present a three factor system based on facial recognition, gesture and device ID and we define a fuzzy matching engine to handle authentication. Preliminary results indicate that such an approach can be fast and user-friendly.

Keywords

Fuzzy matching Authentication Biometric recognition Gesture recognition Multi-factor 

Notes

Acknowledgments

This work was supported by Enterprise Ireland and carried out under the intellectual property of Sensipass Ltd. Patent Publication No. WO/2012/164385 Method and Computer Program for Providing Authentication to Control Access to a Computer System, Roman Sirota (UA), Michael J. Hill (US) and Thomas R. Ruddy (US).

References

  1. 1.
    Ross, T.J.: Fuzzy Logic with Engineering Applications, Wiley, New York (2004). ISBN: 0470860758. http://www.worldcat.org/isbn/0470860758
  2. 2.
    Chi, Z., Yan, H., Pham, T.: Fuzzy algorithms: with applications to image processing and pattern recognition. In: Advances in Fuzzy Systems—Applications and Theory, vol. 10. World Scientific (1996). ISBN: 9810226977, 9789810226978Google Scholar
  3. 3.
    Martino, F.D., Sessa, S.: Image matching by using fuzzy transforms. Adv. Fuzzy Syst. 2013(760704), 10 (2013). doi: 10.1155/2013/760704
  4. 4.
    Perfilieva, I.: Fuzzy Transforms, Transactions on Rough Sets II, vol. 3135, pp. 63–81. Lecture Notes in Computer Science. Springer (2005). ISBN: 978-3-540-23990-1Google Scholar
  5. 5.
    Bloch, I: Fuzzy relative position between objects in image processing: a morphological approach. In: IEEE Transactions on Pattern Analysis and Machine Intelligence (1999)Google Scholar
  6. 6.
    Bloch, I., Ralescu, A.: Directional relative position between objects in image processing: a comparison between fuzzy approaches. Pattern Recogn. 36, 1563–1582 (2003)CrossRefzbMATHGoogle Scholar
  7. 7.
    Tan, Q., Akimoto, M.: Fuzzy matching for robot localization. In: Proceedings of IROS. IEEE (1996). ISBN: 96. 0-7803-3213-XGoogle Scholar
  8. 8.
    Jinwen, T., Jianzhong, H., Jian, L., Dchua, L.: Image matching based on fuzzy information. In: 3rd International Conference on Signal Processing 1996, vol. 2, pp. 946–949. 14–18 Oct 1996. doi: 10.1109/ICSIGP.1996.566246
  9. 9.
    Wu, H., Chen, Q., Yachida, M.: Face detection from color images using a fuzzy pattern matching method. IEEE Trans. Pattern Anal. Mach. Intell. 21(6), 557–563 (1999)Google Scholar
  10. 10.
    Surajit C., Kris, G., Venkatesh, G., Rajeev, M.: Robust and efficient fuzzy match for online data cleaning. In: Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data (SIGMOD’03) (2003)Google Scholar
  11. 11.
    Zvi G., Alberto, A.: Pattern Matching Algorithms. Oxford University Press, Oxford (1997). ISBN: 0-19-511367-5Google Scholar
  12. 12.
    Mustafa, A.A.Y.: Fuzzy shape matching with boundary signatures. Pattern Recogn. Lett. 23, 14731482 (2002)Google Scholar
  13. 13.
    Ukkonen, E.: Algorithms for approximate string matching. Inf. Control 64, 10018 (1985). doi: 10.1016/S0019-9958(85)80046-2 CrossRefMathSciNetGoogle Scholar
  14. 14.
    Li, Z.K., Xu, L.J., Fang, J., Peng, Q.J., Wang, M.: Research on the surrounding traffic flow of railway station based on License Plate Recognition and fuzzy matching. IEEE (2011). 978-1-61284-109-0Google Scholar
  15. 15.
    Schultz P.T., Sartini, R.A.: Multi factor authentication method and system for multi-factor biometric authentication. US 20130227651 A1 (2012)Google Scholar
  16. 16.
    Vyas, R., Garg, G.: Face recognition using feature extraction and neuro-fuzzy techniques. Int. J. Electron. Comput. Sci. Eng. (2013). ISSN: 2277–1956Google Scholar
  17. 17.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst., Man Cybern. 15(1), 116132 (1985). http://www.hi.cs.meiji.ac.jp/takagi/paper/TS-MODEL.tar.gz
  19. 19.
  20. 20.
  21. 21.
  22. 22.
  23. 23.
    Huang, X et al.: A generic framework for three-factor authentication: preserving security and privacy in distributed systems. IEEE Trans. Parallel Distrib. Syst. 22(8), 1390–1397 (2011)Google Scholar
  24. 24.
    Pulli, K., Baksheev, A., Kornyakov, K., Eruhimov, V.: Real-time computer vision with OpenCV. Commun. ACM (CACM) 55(6), 61–69 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • James Stockdale
    • 1
  • Alex Vakaloudis
    • 1
  • Juan Manuel Escaño
    • 1
  • Jian Liang
    • 1
  • Brian Cahill
    • 1
  1. 1.Nimbus CentreCork Institute of TechnologyBishopstownIreland

Personalised recommendations