Skip to main content

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSELECTRIC))

  • 640 Accesses

Abstract

Dye-sensitised solar cells are presented as an example of third generation photovoltaic devices. Their structure and fabrication are described as required for understanding spatial inhomogeneities. Because light interaction takes place via dye molecules, the operation of dye-sensitised solar cells is explained together with the operation under an electroluminescence regime. Conversion efficiency inhomogeneities of dye-sensitised solar cells are distinguished between manufacturing, other and unknown inhomogeneities. Each inhomogeneity type is described by a specific fingerprint obtained using transmittance imaging, light beam induced current and electroluminescence measurements. Ageing studies of dye-sensitised solar cells using transmittance imaging and electroluminescence measurements represents another use of spatial characterisation techniques and reveals the dynamics of the iodine present in the electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grätzel M (2003) Dye-sensitized solar cells. J Photochem Photobiol C Photochem Rev 4:145–153. doi:10.1016/S1389-5567(03)00026-1

    Article  Google Scholar 

  2. Asghar MI, Miettunen K, Halme J, Vahermaa P, Toivola M, Aitola K, Lund P (2010) Review of stability for advanced dye solar cells. Energ Environ Sci 3:418–426. doi:10.1039/b922801b

    Article  Google Scholar 

  3. Hardin BE, Snaith HJ, McGehee MD (2012) The renaissance of dye-sensitized solar cells. Nat Photon 6:162–169. doi:10.1038/nphoton.2012.22

    Article  Google Scholar 

  4. Kim H-S, Lee C-R, Im J-H, Lee K-B, Moehl T, Marchioro A, Moon S-J, Humphry-Baker R, Yum J-H, Moser JE, Grätzel M, Park N-G (2012) Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9 %. Sci Rep 2:591. doi:10.1038/srep00591

    Google Scholar 

  5. Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ (2012) Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338:643–647. doi:10.1126/science.1228604

    Article  Google Scholar 

  6. Miettunen K, Halme J, Lund P (2009) Spatial distribution and decrease of dye solar cell performance induced by electrolyte filling. Electrochem Commun 11:25–27. doi:10.1016/j.elecom.2008.10.013

    Article  Google Scholar 

  7. Scott MJ, Woodhouse M, Parkinson BA, Elliott CM (2008) Spatially resolved current-voltage measurements-evidence for nonuniform photocurrents in dye-sensitized solar cells. J Electrochem Soc 155:290–293. doi:10.1149/1.2830944

    Article  Google Scholar 

  8. Jones TW, Feron K, Anderson KF, Duck BC, Wilson GJ (2014) An applied light-beam induced current study of dye-sensitised solar cells: photocurrent uniformity mapping and true photoactive area evaluation. J Appl Phys 116:043104. doi:10.1063/1.4890935

    Article  Google Scholar 

  9. Navas FJ, Alcantara R, Fernandez-Lorenzo C, Martin J (2009) A methodology for improving laser beam induced current images of dye sensitized solar cells. Rev Sci Instrum 80:063102. doi:10.1063/1.3147381

    Article  Google Scholar 

  10. Macht B, Turrión M, Barkschat A, Salvador P, Ellmer K, Tributsch H (2002) Patterns of efficiency and degradation in dye sensitization solar cells measured with imaging techniques. Sol Energ Mat Sol Cells 73:163–173. doi:10.1016/S0927-0248(01)00121-0

    Article  Google Scholar 

  11. Bokalič M, Krašovec UO, Topič M (2013) Electroluminescence as a spatial characterisation technique for dye-sensitised solar cells. Prog Photovolt Res Appl 21:1176–1180. doi:10.1002/pip.2224

    Google Scholar 

  12. Wen-Bo X, Wei-Qing L, Xing-Dao H (2013) Analysis of electron recombination in dye sensitized solar cells based on the forward bias dependence of dark current and electroluminescence characterization. Chin Phys Lett 30:108801. doi:10.1088/0256-307X/30/10/108801

    Article  Google Scholar 

  13. Kirchartz T, Mattheis J, Rau U (2008) Detailed balance theory of excitonic and bulk heterojunction solar cells. Phys Rev B 78:235320. doi:10.1103/PhysRevB.78.235320

    Article  Google Scholar 

  14. Hočevar M, Berginc M, Topič M, Opara Krašovec U (2010) Sponge-like TiO2 layers for dye-sensitized solar cells. J Sol-Gel Sci Technol 53:647–654. doi:10.1007/s10971-009-2144-6

    Article  Google Scholar 

  15. Opara Krašovec U, Berginc M, Hočevar M, Topič M (2009) Unique TiO2 paste for high efficiency dye-sensitized solar cells. Sol Energ Mat Sol Cells 93:379–381. doi:10.1016/j.solmat.2008.11.012

    Article  Google Scholar 

  16. Solaronix—innovative solutions for solar professionals. http://www.solaronix.com/. Accessed 7 Aug 2014

  17. Berginc M, Opara Krašovec U, Jankovec M, Topič M (2007) The effect of temperature on the performance of dye-sensitized solar cells based on a propyl-methyl-imidazolium iodide electrolyte. Sol Energ Mat Sol Cells 91:821–828. doi:10.1016/j.solmat.2007.02.001

    Article  Google Scholar 

  18. Athanassov Y, Rotzinger FP, Péchy P, Grätzel M (1997) Sensitized electroluminescence on mesoporous oxide semiconductor films. J Phys Chem B 101:2558–2563. doi:10.1021/jp962192j

    Article  Google Scholar 

  19. Trupke T, Würfel P, Uhlendorf I, Lauermann I (1999) Electroluminescence of the dye-sensitized solar cell. J Phys Chem B 103:1905–1910. doi:10.1021/jp982555a

    Article  Google Scholar 

  20. Martinson ABF, Hamann TW, Pellin MJ, Hupp JT (2008) New architectures for dye-sensitized solar cells. Chem Eur J 14:4458–4467. doi:10.1002/chem.200701667

    Article  Google Scholar 

  21. Rau U (2007) Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells. Phys Rev B 76:085303. doi:10.1103/PhysRevB.76.085303

    Article  Google Scholar 

  22. Opara Krašovec U, Bokalič M, Topič M (2013) Ageing of DSSC studied by electroluminescence and transmission imaging. Sol Energ Mat Sol Cells 117:67–72. doi:10.1016/j.solmat.2013.05.029

    Article  Google Scholar 

  23. Berginc M, Opara Krašovec U, Topič M (2014) Outdoor ageing of the dye-sensitized solar cell under different operation regimes. Sol Energ Mat Sol Cells 120:491–499. doi:10.1016/j.solmat.2013.09.029

  24. Berginc M, Topič M, Opara Krašovec U (2014) Recovery of dye-sensitized solar cell’s performance by heat treatment. Phys Chem Chem Phys 16:12940–12948. doi:10.1039/C4CP01463D

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matevž Bokalič .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Bokalič, M., Topič, M. (2015). Dye-Sensitised Solar Cells. In: Spatially Resolved Characterization in Thin-Film Photovoltaics. SpringerBriefs in Electrical and Computer Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-14651-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14651-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14650-8

  • Online ISBN: 978-3-319-14651-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics