Skip to main content

Spatially Resolved Characterisation Techniques

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSELECTRIC))

Abstract

Techniques for spatial characterisation are presented: optical imaging, light beam induced current, electro- and photoluminescence, and thermography. An emphasis is placed on luminescence techniques, where image acquisition and processing are explained in detail with the aim of producing a true luminescence image. The steps required for absolute luminescence evaluation are described.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mauk MG (2012) Image processing for solar cell analysis, diagnostics and quality assurance inspection. In: Anwar S, Efstathiadis H, Qazi S (eds) Handbook of research on solar energy systems and technologies: IGI Global, pp 338–375

    Google Scholar 

  2. Bokalič M, Krašovec UO, Topič M (2013) Electroluminescence as a spatial characterisation technique for dye-sensitised solar cells. Prog Photovolt Res Appl 21:1176–1180. doi:10.1002/pip.2224

    Google Scholar 

  3. Berginc M, Krašovec UO, Topič M (2014) Outdoor ageing of the dye-sensitized solar cell under different operation regimes. Sol Energy Mat Sol Cells 120:491–499. doi:10.1016/j.solmat.2013.09.029

    Article  Google Scholar 

  4. Hari Rao CV (1976) Electrical effects of SiC inclusions in EFG silicon ribbon solar cells. J Appl Phys 47:2614. doi:10.1063/1.322980

    Article  Google Scholar 

  5. Zook JD (1980) Effects of grain boundaries in polycrystalline solar cells. Appl Phys Lett 37:223. doi:10.1063/1.91832

    Article  Google Scholar 

  6. Navas FJ, Alcantara R, Fernandez-Lorenzo C, Martin J (2009) A methodology for improving laser beam induced current images of dye sensitized solar cells. Rev Sci Instrum 80:063102. doi:10.1063/1.3147381

    Article  Google Scholar 

  7. Geisthardt RM, Sites JR (2014) Nonuniformity characterization of CdTe solar cells using LBIC. IEEE J Photovolt 4:1114–1118. doi:10.1109/JPHOTOV.2014.2314575

    Article  Google Scholar 

  8. Acciarri M, Binetti S, Racz A, Pizzini S, Agostinelli G (2002) Fast LBIC in-line characterization for process quality control in the photovoltaic industry. Sol Energy Mat Sol Cells 72:417–424. doi:10.1016/S0927-0248(01)00189-1

    Article  Google Scholar 

  9. Bokalič M, Jankovec M, Topič M (2009) Solar cell efficiency mapping by LBIC. 45th International conference on microelectronics, devices and materials and the workshop on advanced photovoltaic devices and technologies, MIDEM 2009 proceedings. Postojna, Slovenia, pp 269–273

    Google Scholar 

  10. Bokalič M, Topič M (2010) Light beam characterisation of LBIC apparatus and selected complementary applications. 46th International Conference on Microelectronics, Devices and Materials and the Workshop on Optical sensors, MIDEM 2010 proceedings. Radenci, Slovenia, pp 233–237

    Google Scholar 

  11. Vorster FJ, van Dyk EE (2007) Bias-dependent high saturation solar LBIC scanning of solar cells. Sol Energy Mat Sol Cells 91:871–876. doi:10.1016/j.solmat.2007.01.021

    Article  Google Scholar 

  12. Vorster FJ, van Dyk EE (2008) Solar LBIC scanning of high-efficiency point-contact silicon solar cells. Phys Status Solidi C 5:649–652. doi:10.1002/pssc.200776841

    Article  Google Scholar 

  13. Pernau T, Fath P, Bucher E (2002) Phase-sensitive LBIC analysis. Conference record of the twenty-ninth IEEE photovoltaic specialists conference 2002, pp 442–445

    Google Scholar 

  14. Rinio M, Möller HJ, Werner M (1998) LBIC Investigations of the lifetime degradation by extended defects in multicrystalline solar silicon. Solid State Phenom 63–64:115–122. doi:10.4028/www.scientific.net/SSP.63-64.115

    Article  Google Scholar 

  15. Carstensen J, Popkirov G, Bahr J, Föll H (2003) CELLO: an advanced LBIC measurement technique for solar cell local characterization. Sol Energy Mat Sol Cells 76:599–611. doi:10.1016/S0927-0248(02)00270-2

    Article  Google Scholar 

  16. Eisgruber IL, Sites JR (1996) Extraction of individual-cell photocurrents and shunt resistances in encapsulated modules using large-scale laser scanning. Prog Photovolt Res Appl 4:63–75. doi: 10.1002/(SICI)1099-159X(199601/02)4:1<63::AID-PIP112>3.0.CO;2-R

  17. Vorasayan P, Betts TR, Tiwari AN, Gottschalg R (2009) Multi-laser LBIC system for thin film PV module characterisation. Sol Energy Mat Sol Cells 93:917–921. doi:10.1016/j.solmat.2008.10.019

    Article  Google Scholar 

  18. Padilla M, Michl B, Thaidigsmann B, Warta W, Schubert MC (2014) Short-circuit current density mapping for solar cells. Sol Energy Mat Sol Cells 120:282–288. doi:10.1016/j.solmat.2013.09.019

    Article  Google Scholar 

  19. Shirakata S, Yudate S, Honda J, Iwado N (2011) Photoluminescence of Cu(In,Ga)Se2 in the solar cell preparation process. Jpn J Appl Phys 50:05FC02. doi: 10.1143/JJAP.50.05FC02

  20. Van Roosbroeck W, Shockley W (1954) Photon-radiative recombination of electrons and holes in Germanium. Phys Rev 94:1558–1560. doi:10.1103/PhysRev.94.1558

    Article  Google Scholar 

  21. Lasher G, Stern F (1964) Spontaneous and stimulated recombination radiation in semiconductors. Phys Rev 133:A553–A563. doi:10.1103/PhysRev.133.A553

    Article  Google Scholar 

  22. Wurfel P (1982) The chemical potential of radiation. J Phys C 15:3967–3985. doi:10.1088/0022-3719/15/18/012

    Article  Google Scholar 

  23. Schick K, Daub E, Finkbeiner S, Würfel P (1992) Verification of a generalized Planck law for luminescence radiation from silicon solar cells. Appl Phys A 54:109–114. doi:10.1007/BF00323895

    Article  Google Scholar 

  24. Daub E, Würfel P (1995) Ultralow values of the absorption coefficient of Si obtained from luminescence. Phys Rev Lett 74:1020–1023. doi:10.1103/PhysRevLett.74.1020

    Article  Google Scholar 

  25. Würfel P, Finkbeiner S, Daub E (1995) Generalized Planck’s radiation law for luminescence via indirect transitions. Appl Phys A 60:67–70. doi:10.1007/BF01577615

    Article  Google Scholar 

  26. Trupke T, Daub E, Würfel P (1998) Absorptivity of silicon solar cells obtained from luminescence. Sol Energy Mat Sol Cells 53:103–114. doi:10.1016/S0927-0248(98)00016-6

    Article  Google Scholar 

  27. Ostapenko S, Tarasov I, Kalejs JP, Haessler C, Reisner E-U (2000) Defect monitoring using scanning photoluminescence spectroscopy in multicrystalline silicon wafers. Semicond Sci Technol 15:840. doi:10.1088/0268-1242/15/8/310

    Article  Google Scholar 

  28. Fuyuki T, Kondo H, Yamazaki T, Takahashi Y, Uraoka Y (2005) Photographic surveying of minority carrier diffusion length in polycrystalline silicon solar cells by electroluminescence. Appl Phys Lett 86:262108. doi:10.1063/1.1978979

    Article  Google Scholar 

  29. Trupke T, Bardos RA, Schubert MC, Warta W (2006) Photoluminescence imaging of silicon wafers. Appl Phys Lett 89:044107. doi:10.1063/1.2234747

    Article  Google Scholar 

  30. Würfel P, Trupke T, Puzzer T, Schäffer E, Warta W, Glunz SW (2007) Diffusion lengths of silicon solar cells from luminescence images. J Appl Phys 101:123110. doi:10.1063/1.2749201

    Article  Google Scholar 

  31. Mitchell B, Trupke T, Weber JW, Nyhus J (2011) Bulk minority carrier lifetimes and doping of silicon bricks from photoluminescence intensity ratios. J Appl Phys 109:083111. doi:10.1063/1.3575171

    Article  Google Scholar 

  32. Trupke T, Bardos RA, Abbott MD, Chen FW, Cotter JE, Lorenz A (2006) Fast photoluminescence imaging of silicon wafers. Conference record of the 2006 IEEE 4th world conference on photovoltaic energy conversion. pp 928–931

    Google Scholar 

  33. Hinken D, Ramspeck K, Bothe K, Fischer B, Brendel R (2007) Series resistance imaging of solar cells by voltage dependent electroluminescence. Appl Phys Lett 91:182104. doi:10.1063/1.2804562

    Article  Google Scholar 

  34. Haunschild J, Glatthaar M, Kasemann M, Rein S, Weber ER (2009) Fast series resistance imaging for silicon solar cells using electroluminescence. Phys Status Solidi Rapid Res Lett 3:227–229. doi:10.1002/pssr.200903175

    Article  Google Scholar 

  35. Helbig A, Kirchartz T, Schaeffler R, Werner JH, Rau U (2010) Quantitative electroluminescence analysis of resistive losses in Cu(In, Ga)Se2 thin-film modules. Sol Energy Mat Sol Cells 94:979–984. doi:10.1016/j.solmat.2010.01.028

    Article  Google Scholar 

  36. Zhang L, Shen H (2009) Determination of the specific shunt resistances under and away from the front contacts of solar cell. Sci China Ser E-Technol Sci 52:3082–3084. doi:10.1007/s11431-009-0298-7

    Article  MathSciNet  Google Scholar 

  37. Kasemann M, Grote D, Walter B, Kwapil W, Trupke T, Augarten Y, Bardos R a., Pink E, Abbott M d., Warta W (2008) Luminescence imaging for the detection of shunts on silicon solar cells. Prog Photovolt Res Appl 16:297–305. doi: 10.1002/pip.812

  38. Zhang L, Shen H, Yang Z, Jin J (2010) Shunt removal and patching for crystalline silicon solar cells using infrared imaging and laser cutting. Prog Photovolt Res Appl 18:54–60. doi:10.1002/pip.934

    Article  Google Scholar 

  39. Abbott MD, Trupke T, Hartmann HP, Gupta R, Breitenstein O (2007) Laser isolation of shunted regions in industrial solar cells. Prog Photovolt Res Appl 15:613–620. doi:10.1002/pip.766

    Article  Google Scholar 

  40. Glatthaar M, Haunschild J, Kasemann M, Giesecke J, Warta W, Rein S (2010) Spatially resolved determination of dark saturation current and series resistance of silicon solar cells. Phys Status Solidi Rapid Res Lett 4:13–15. doi:10.1002/pssr.200903290

    Article  Google Scholar 

  41. Hameiri Z, Chaturvedi P, Juhl MK, Trupke T (2013) Spatially resolved emitter saturation current by photoluminescence imaging. IEEE 39th photovoltaic specialists conference (PVSC) 2013, pp 0664–0668

    Google Scholar 

  42. Shen C, Kampwerth H, Green M, Trupke T, Carstensen J, Schütt A (2013) Spatially resolved photoluminescence imaging of essential silicon solar cell parameters and comparison with CELLO measurements. Sol Energy Mat Sol Cells 109:77–81. doi:10.1016/j.solmat.2012.10.010

    Article  Google Scholar 

  43. Breitenstein O, Bauer J, Wagner J-M, Zakharov N, Blumtritt H, Lotnyk A, Kasemann M, Kwapil W, Warta W (2010) Defect-induced breakdown in multicrystalline silicon solar cells. IEEE Trans Electron Dev 57:2227–2234. doi:10.1109/TED.2010.2053866

    Article  Google Scholar 

  44. Schneemann M, Helbig A, Kirchartz T, Carius R, Rau U (2010) Reverse biased electroluminescence spectroscopy of crystalline silicon solar cells with high spatial resolution. Phys Status Solidi A 207:2597–2600. doi:10.1002/pssa.201026309

    Article  Google Scholar 

  45. Schubert MC (2008) Spatially resolved luminescence spectroscopy on multicrystalline silicon. 23rd European photovoltaic solar energy conference. Valencia, Spain, pp 17–23

    Google Scholar 

  46. Li Q, Wang W, Ma C, Zhu Z (2010) Detection of physical defects in solar cells by hyperspectral imaging technology. Opt Laser Technol 42:1010–1013. doi:10.1016/j.optlastec.2010.01.022

    Article  Google Scholar 

  47. Olsen E, Flø AS (2011) Spectral and spatially resolved imaging of photoluminescence in multicrystalline silicon wafers. Appl Phys Lett 99:011903. doi:10.1063/1.3607307

    Article  Google Scholar 

  48. Delamarre A, Lombez L, Guillemoles JF (2012) Characterization of solar cells using electroluminescence and photoluminescence hyperspectral images. J Photon Energy 2:027004. doi:10.1117/1.JPE.2.027004

    Article  Google Scholar 

  49. Binetti S, Le Donne A, Sassella A (2014) Photoluminescence and infrared spectroscopy for the study of defects in silicon for photovoltaic applications. Sol Energy Mat Sol Cells 130:696–703. doi:10.1016/j.solmat.2014.02.004

    Article  Google Scholar 

  50. Fullerton S, Bennett K, Toda E, Takahashi T (2012) ORCA-Flash4.0 white paper

    Google Scholar 

  51. Bokalič M, Raguse J, Sites JR, Topič M (2013) Analysis of electroluminescence images in small-area circular CdTe solar cells. J Appl Phys 114:123102. doi:10.1063/1.4820392

    Article  Google Scholar 

  52. Fuyuki T, Kitiyanan A (2009) Photographic diagnosis of crystalline silicon solar cells utilizing electroluminescence. Appl Phys A 96:189–196. doi:10.1007/s00339-008-4986-0

    Article  Google Scholar 

  53. Price KJ, Vasko A, Gorrelland L, Compaan AD (2003) Temperature-dependent electroluminescence from CdTe/CdS solar cells. MRS Online Proceedings Library 763:195–200

    Google Scholar 

  54. Kirchartz T, Rau U, Kurth M, Mattheis J, Werner JH (2007) Comparative study of electroluminescence from Cu(In, Ga)Se2 and Si solar cells. Thin Solid Films 515:6238–6242. doi:10.1016/j.tsf.2006.12.105

    Article  Google Scholar 

  55. Müller TCM, Pieters BE, Kirchartz T, Carius R, Rau U (2014) Effect of localized states on the reciprocity between quantum efficiency and electroluminescence in Cu(In, Ga)Se2 and Si thin-film solar cells. Sol Energy Mat Sol Cells 126:95–130. doi:10.1016/j.solmat.2014.04.018

    Article  Google Scholar 

  56. Giesecke JA, Kasemann M, Warta W (2009) Determination of local minority carrier diffusion lengths in crystalline silicon from luminescence images. J Appl Phys 106:014907. doi:10.1063/1.3157200

    Article  Google Scholar 

  57. Topič M, Raguse J, Zaunbrecher K, Bokalič M, Sites JR (2011) Electroluminescence of thin film solar cells and PV modules—camera calibration. Proceedings of 26th EUPVSEC, Hamburg, Germany, pp 2963–2966

    Google Scholar 

  58. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. doi:10.1038/nmeth.2089

    Article  Google Scholar 

  59. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji an open-source platform for biological-image analysis. Nat Methods 9:676–682. doi:10.1038/nmeth.2019

    Article  Google Scholar 

  60. Green MA (2011) Radiative efficiency of state-of-the-art photovoltaic cells. Prog Photovolt Res Appl 472–476. doi: 10.1002/pip.1147

  61. Breitenstein O, Warta W, Langenkamp M (2010) Lock-in thermography—basics and use for evaluating electronic devices and materials. Springer, Berlin

    Google Scholar 

  62. Gerber A, Huhn V, Tran TMH, Siegloch M, Augarten Y, Pieters BE, Rau U (2014) Advanced large area characterization of thin-film solar modules by electroluminescence and thermography imaging techniques. Sol Energy Mat Sol C. doi: 10.1016/j.solmat.2014.09.020

  63. Bauer J, Breitenstein O, Wagner J-M (2009) Lock-in thermography: a versatile tool for failure analysis of solar cells. Electron Device Fail Anal 11:6–12

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matevž Bokalič .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Bokalič, M., Topič, M. (2015). Spatially Resolved Characterisation Techniques. In: Spatially Resolved Characterization in Thin-Film Photovoltaics. SpringerBriefs in Electrical and Computer Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-14651-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14651-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14650-8

  • Online ISBN: 978-3-319-14651-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics