Advertisement

Proportional-Integral Observer in Robust Control, Fault Detection, and Decentralized Control of Dynamic Systems

  • Bahram ShafaiEmail author
  • Mehrdad Saif
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 27)

Abstract

This chapter initially reviews observer theory as it was developed over the past few decades. The state observer and its order reduction including functional observer in connection to state feedback control design are briefly discussed. The robustness of observer-based controller design is also explored. The loss of robustness due to the inclusion of observer in optimal linear quadratic regulator (LQR) and its recovery procedure (LTR) are summarized. The subsequent development of new observer structures such as disturbance observer (DO), unknown input observer (UIO), and proportional-integral observer (PIO) for disturbance estimation and fault detection is highlighted. Throughout the chapter we concentrate mainly on important advantages of PI-observer. Finally, we consider the problem of designing a decentralized PI observer with prescribed degree of convergence for a set of interconnected systems. Under the assumption of linear interactions, we provide a direct design procedure for the PI observer which can effectively be used in disturbance estimation and observer-based control design enhancing the robustness properties. In this connection we also extend the results to the case of designing controllers that attenuate the disturbance while preserving the stability. It is shown that the design can be formulated in terms of LMI which efficiently solve the problem.

Keywords

Fault Detection Linear Quadratic Regulator Disturbance Observer State Feedback Control Actuator Fault 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Luenberger, D.: Observing the state of a linear system. IEEE Transactions on Military Electronics 8, 74–80 (1964)CrossRefGoogle Scholar
  2. 2.
    Luenberger, D.: An Introduction to Observers. IEEE Transactions on Automatic Control 16, 596–602 (1971)CrossRefGoogle Scholar
  3. 3.
    Chen, C.T.: Linear system theory and design. Oxford University Press, Inc. (1995)Google Scholar
  4. 4.
    O’Reily, J.: Observers for Linear Systems. Academic Press (1983)Google Scholar
  5. 5.
    Korovin, S., Fomichev, V.: State Observer for Linear Systems with uncertainty. de Gruyter Press, Berlin (2009)CrossRefGoogle Scholar
  6. 6.
    Trinh, H., Fernando, T.: Functional Observers for Dynamical Systems. Springer, Berlin (2012)CrossRefzbMATHGoogle Scholar
  7. 7.
    Gupta, R., Fairman, F., Hinamoto, T.: A direct procedure for the design of single functional observers. IEEE Trans. Circuits and Systems CAS 28, 294–300 (1981)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Fortman, T., Williamson, D.: Design of a low order observer for linear feedback control laws. IEEE Transactions on Automatic Control 17, 301–308 (1972)CrossRefGoogle Scholar
  9. 9.
    Trinh, H., Nahavandi, S., Tran, T.: Algorithms for designing reduced-order functional observers of linear systems. International Journal of Innovative Computing, Information and Control 4(2), 321–333 (2008)Google Scholar
  10. 10.
    Darouach, M.: Existence and design of functional observers for linear systems. IEEE Transactions on Automatic Control 45(5), 940–943 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Tsui, C.: A new algorithm for the design of multifunctional observers. IEEE Transactions on Automatic Control 30(1), 89–93 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Uddin, V., Shafai, B., Kawaji, S.: A simple method for the design of minimal order multifunctional observer. In: Proc. of 2nd IASTED International Conference on Control and Applications, Banff, Canada, pp. 107–112 (1999)Google Scholar
  13. 13.
    Shafai, B., Carroll, R.L.: Minimal-order observer designs for linear time-varying multivariable systems. IEEE Transactions on Automatic Control 31(8), 757–761 (1986)CrossRefzbMATHGoogle Scholar
  14. 14.
    Shafai, B.: Design of single-functional observers for linear time-varying multivariable systems. International Journal of Systems Science 20(11), 2227–2239 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Chai, W., Loh, N.K., Hu, H.: Observer design for time-varying systems. International Journal of Systems Science 22(7), 1177–1196 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Trumpf, J.: Observers for linear time-varying systems. Linear Algebra and its Applications 425(2), 303–312 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Rotella, F., Zambettakis, I.: On functional observers for linear time-varying systems. IEEE Transaction on Automatic Control 58(5), 1354–1360 (2013)CrossRefGoogle Scholar
  18. 18.
    Bestle, D., Zeitz, M.: Canonical form observer design for non-linear time-variable systems. International Journal of Control 38(2), 419–431 (1983)CrossRefzbMATHGoogle Scholar
  19. 19.
    Gauthier, J.P., Hammouri, H., Othman, S.: A simple observer for nonlinear systems applications to bioreactors. IEEE Transactions on Automatic Control 37(6), 875–880 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Ciccarella, G., Dalla Mora, M., Germani, A.: A Luenberger-like observer for nonlinear systems. International Journal of Control 57(3), 537–556 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Fairman, F., Kumar, A.: Delayless observers for systems with delay. IEEE Transactions on Automatic Control 31(3), 258–259 (1986)CrossRefzbMATHGoogle Scholar
  22. 22.
    Hou, M., Zitek, P., Patton, R.: An observer design for linear time-delay systems. IEEE Transactions on Automatic Control 47(1), 121–125 (2002)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Trinh, H., Teh, P., Fernando, T.: Time-delay systems: Design of delay-free and low-order observers. IEEE Transactions on Automatic Control 55(10), 2434–2438 (2010)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Sadaka, H., Shafai, B., Sipahi, R.: Robust PI observer design for linear time-delay systems. In: Control Applications(CCA) & Intelligent Control(ISIC), pp. 1209–1213. IEEE (2009)Google Scholar
  25. 25.
    Shafai, B., Carroll, R.L.: Design of a minimal-order observer for singular systems. International Journal of Control 45(3), 1075–1081 (1987)CrossRefzbMATHGoogle Scholar
  26. 26.
    Dai, L.: Singular Control Systems. Springer, Berlin (1989)CrossRefzbMATHGoogle Scholar
  27. 27.
    Darouach, M., Boutayeb, M.: Design of observers for descriptor systems. IEEE transactions on Automatic Control 40(7), 1323–1327 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Hou, M., Muller, P.: Observer design for descriptor systems. IEEE Transactions on Automatic Control 44(1), 164–168 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Rami, M.A., Tadeo, F., Helmke, U.: Positive observers for linear positive systems, and their implications. International Journal of Control 84(4), 716–725 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Back, J., Astolfi, A.: Design of positive linear observers for positive linear systems via coordinate transformations and positive realizations. SIAM Journal on Control and Optimization 47(1), 345–373 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Shafai, B.: Parallel procedure for the design of observers in high-order multivariable systems. International Journal of Control 47(5), 1489–1496 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Jamshidi, M.: Large-scale systems: Modeling, control and fuzzy logic. Upper Saddle River. Prentice-Hall (1996)Google Scholar
  33. 33.
    Petkov, P.H., Christov, N.D., Konstantinov, M.M.: Computational methods for linear control systems. Prentice-Hall International (UK) Ltd (1991)Google Scholar
  34. 34.
    Saif, M., Guan, Y.: Decentralized state estimation in large-scale interconnected dynamical systems. Automatica 28(1), 215–219 (1992)CrossRefMathSciNetGoogle Scholar
  35. 35.
    Doyle, J.C., Stein, G.: Robustness with Observers. IEEE Transactions on Automatic Control 24(4), 607–611 (1979)CrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    Doyle, J.C., Stein, G.: Multivariable Feedback Design: concepts for a classical/modern synthesis. IEEE Transactions on Automatic Control 26, 4–16 (1981)CrossRefzbMATHGoogle Scholar
  37. 37.
    Athans, M.: A tutorial on the LQG/LTR method. In: Proc. of American Control Conference, Seattle, WA, pp. 1289–1296 (1986)Google Scholar
  38. 38.
    Shafai, B., Beale, S., Niemann, H.H., Stoustrup, J.L.: Modified structures for loop transfer recovery design. In: Proc. 32nd IEEE Conference on Decision and Control, San Antonio, TX, pp. 3341–3344 (1993)Google Scholar
  39. 39.
    Saberi, A., Chen, B.M., Sannuti, P.: Loop transfer recovery: Analysis and design. Springer, New York (1993)CrossRefzbMATHGoogle Scholar
  40. 40.
    Yao, Y.X., Zhang, Y.M., Kovacevic, R.: Loop Transfer recovery design with proportional integral observer based on H  ∞  optimal observation. In: Proc. of American Control Conference, Albuquerque, New Mexico, vol. 1, pp. 786–790 (1997)Google Scholar
  41. 41.
    Niemann, H.H., Stoustrup, J., Shafai, B., Beale, S.: LTR design of proportional-integral observers. International Journal of Robust and Nonlinear Control 5(7), 671–693 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  42. 42.
    Shafai, B., Beale, S., Niemann, H.H., Stoustrup, J.: LTR design of discrete-time proportional-integral observers. IEEE Transactions on Automatic Control 41(7), 1056–1062 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  43. 43.
    Kim, B.K., Chung, W.K.: Advanced disturbance observer design for mechanical positioning systems. IEEE Transactions on Industrial Electronics 50(6), 1207–1216 (2003)CrossRefGoogle Scholar
  44. 44.
    Guan, Y., Saif, M.: A novel approach to the design of unknown input observers. IEEE Transactions on Automatic Control 36(5), 632–635 (1991)CrossRefGoogle Scholar
  45. 45.
    Kudva, P., Viswanadham, N., Ramakrishna, A.: Observers for linear systems with unknown inputs. IEEE Transactions on Automatic Control 25(1), 113–115 (1980)CrossRefzbMATHMathSciNetGoogle Scholar
  46. 46.
    Hou, M., Muller, P.: Design of observers for linear systems with unknown inputs. IEEE Transactions on Automatic Control 37, 871–875 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  47. 47.
    Busawon, K.K., Kabore, P.: Disturbance attenuation using proportional integral observers. International Journal of Control 74(6), 618–627 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  48. 48.
    Shafai, B., Pi, C.T., Nork, S.: Simultaneous disturbance attenuation and fault detection using proportional integral observers. In: Proc. of American Control Conference, Anchorage, Alaska, pp. 1647–1649 (2002)Google Scholar
  49. 49.
    Marx, B., Koenig, D., Georges, D.: Robust fault diagnosis for linear descriptor systems using proportional integral observers. In: Proc. of the 42nd IEEE Conference on Decision and Control, Maui, Hawaii, pp. 457–462 (2003)Google Scholar
  50. 50.
    Soffker, D., Yu, T.J., Muller, P.C.: State estimation of dynamical systems with nonlinearities by using proportional-integral observer. International Journal of Systems Science 26(9), 1571–1582 (1995)CrossRefGoogle Scholar
  51. 51.
    Shafai, B., Pi, C.T., Nork, S., Linder, S.P.: Proportional integral adaptive observer for parameter and disturbance estimations. In: Proc. of the 41st IEEE Conference on Decision and Control, Las Vegas, Nevada, pp. 4694–4699 (2002)Google Scholar
  52. 52.
    Patton, R., Frank, P., Clark, R.: Fault diagnosis in dynamic systems: theory and application. Prentice-Hall, Upper Saddle River (1989)Google Scholar
  53. 53.
    Liu, Y.: Robust nonlinear control design with Proportional-Integral-observer technique, Diss. Universitat Duisburg-Essen, Fakultat für Ingenieurwissenschaften Maschinenbau und Verfahrenstechnik (2011)Google Scholar
  54. 54.
    Shafai, B., Ghadami, R., Saif, M.: Robust decentralized PI observer for linear interconnected systems. In: IEEE International Symposium on Computer-Aided Control System Design (CACSD), pp. 650–655 (2011)Google Scholar
  55. 55.
    Ghadami, R., Shafai, B.: Decentralized PI observer-based control of nonlinear interconnected systems with disturbance attenuation. In: Proc. 2011 American Control Conference, San Francisco, CA, pp. 4705–4710 (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Northeastern UniversityBostonUSA
  2. 2.University of WindsorWindsorCanada

Personalised recommendations