Skip to main content

Blind Deconvolution via Lower-Bounded Logarithmic Image Priors

  • Conference paper
Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2015)

Abstract

In this work we devise two novel algorithms for blind deconvolution based on a family of logarithmic image priors. In contrast to recent approaches, we consider a minimalistic formulation of the blind deconvolution problem where there are only two energy terms: a least-squares term for the data fidelity and an image prior based on a lower-bounded logarithm of the norm of the image gradients. We show that this energy formulation is sufficient to achieve the state of the art in blind deconvolution with a good margin over previous methods. Much of the performance is due to the chosen prior. On the one hand, this prior is very effective in favoring sparsity of the image gradients. On the other hand, this prior is non convex. Therefore, solutions that can deal effectively with local minima of the energy become necessary. We devise two iterative minimization algorithms that at each iteration solve convex problems: one obtained via the primal-dual approach and one via majorization-minimization. While the former is computationally efficient, the latter achieves state-of-the-art performance on a public dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babacan, S.D., Molina, R., Do, M.N., Katsaggelos, A.K.: Bayesian blind deconvolution with general sparse image priors. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VI. LNCS, vol. 7577, pp. 341–355. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  2. Candes, E.J., Wakin, M.B., Boyd, S.: Enhancing sparsity by reweighted l1 minimization. Journal of Fourier Analysis and Applications 14(5), 877–905 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. Journal of Mathematical Imaging and Vision 40(1), 120–145 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chan, T., Wong, C.K.: Total variation blind deconvolution. IEEE Transactions on Image Processing 7(3), 370–375 (1998)

    Article  Google Scholar 

  5. Cho, S., Lee, S.: Fast motion deblurring. ACM Trans. Graph. 28(5), 145:1–145:8 (2009)

    Google Scholar 

  6. Fergus, R., Singh, B., Hertzmann, A., Roweis, S.T., Freeman, W.T.: Removing camera shake from a single photograph. ACM Trans. Graph. 25(3), 787–794 (2006)

    Article  Google Scholar 

  7. Hunter, D., Lange, K.: A tutorial on mm algorithms. The American Statistician 58, 30–37 (2004)

    Article  MathSciNet  Google Scholar 

  8. Krishnan, D., Tay, T., Fergus, R.: Blind deconvolution using a normalized sparsity measure. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 233–240 (June 2011)

    Google Scholar 

  9. Krishnan, D., Bruna, J., Fergus, R.: Blind deconvolution with re-weighted sparsity promotion. CoRR abs/1311.4029 (2013)

    Google Scholar 

  10. Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Understanding blind deconvolution algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2354–2367 (2011)

    Article  Google Scholar 

  11. Levin, A., Weiss, Y., Durand, F., Freeman, W.: Efficient marginal likelihood optimization in blind deconvolution. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2657–2664 (June 2011)

    Google Scholar 

  12. Levin, A., Fergus, R., Durand, F., Freeman, W.T.: Image and depth from a conventional camera with a coded aperture. ACM Trans. Graph. 26(3) (July 2007)

    Google Scholar 

  13. Ochs, P., Chen, Y., Brox, T., Pock, T.: ipiano: Inertial proximal algorithm for nonconvex optimization. SIAM J. Imaging Sciences 7(2), 1388–1419 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  14. Perrone, D., Favaro, P.: Total variation blind deconvolution: The devil is in the details. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2909–2916 (June 2014)

    Google Scholar 

  15. Rockafellar, R.: Convex Analysis. Princeton University Press (1970)

    Google Scholar 

  16. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60(1-4), 259–268 (1992)

    Article  MATH  Google Scholar 

  17. Shan, Q., Jia, J., Agarwala, A.: High-quality motion deblurring from a single image. ACM Trans. Graph. 27(3), 73:1–73:10 (2008)

    Google Scholar 

  18. Srivastava, A., Lee, A., Simoncelli, E.P., Zhu, S.C.: On advances in statistical modeling of natural images. Journal of Mathematical Imaging and Vision 18, 17–33 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Strong, D., Chan, T.: Edge-preserving and scale-dependent properties of total variation regularization. Inverse Problems 19(6), S165 (2003)

    Google Scholar 

  20. Sun, L., Cho, S., Wang, J., Hays, J.: Edge-based blur kernel estimation using patch priors. In: 2013 IEEE International Conference on Computational Photography (ICCP), pp. 1–8 (April 2013)

    Google Scholar 

  21. Wipf, D., Zhang, H.: Analysis of bayesian blind deconvolution. In: Heyden, A., Kahl, F., Olsson, C., Oskarsson, M., Tai, X.-C. (eds.) EMMCVPR 2013. LNCS, vol. 8081, pp. 40–53. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  22. Xu, L., Jia, J.: Two-phase kernel estimation for robust motion deblurring. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 157–170. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  23. Xu, L., Zheng, S., Jia, J.: Unnatural l0 sparse representation for natural image deblurring. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1107–1114 (June 2013)

    Google Scholar 

  24. You, Y.L., Kaveh, M.: A regularization approach to joint blur identification and image restoration. IEEE Transactions on Image Processing 5(3), 416–428 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Perrone, D., Diethelm, R., Favaro, P. (2015). Blind Deconvolution via Lower-Bounded Logarithmic Image Priors. In: Tai, XC., Bae, E., Chan, T.F., Lysaker, M. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2015. Lecture Notes in Computer Science, vol 8932. Springer, Cham. https://doi.org/10.1007/978-3-319-14612-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14612-6_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14611-9

  • Online ISBN: 978-3-319-14612-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics