Skip to main content

Why Does Non-binary Mask Optimisation Work for Diffusion-Based Image Compression?

  • Conference paper
Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8932))

Abstract

Finding optimal data for inpainting is a key problem for image-compression with partial differential equations. Not only the location of important pixels but also their values should be optimal to maximise the quality gain. The position of important data is usually encoded in a binary mask. Recent studies have shown that allowing non-binary masks may lead to tremendous speedups but comes at the expense of higher storage costs and yields prohibitive memory requirements for the design of competitive image compression codecs. We show that a recently suggested heuristic to eliminate the additional storage costs of the non-binary mask has a strong theoretical foundation in finite dimension. Binary and non-binary masks are equivalent in the sense that they can both give the same reconstruction error if the binary mask is supplemented with optimal data which does not increase the memory footprint. Further, we suggest two fast numerical schemes to obtain this optimised data. This provides a significant building block in the conception of efficient data compression schemes with partial differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Masnou, S., Morel, J.M.: Level lines based disocclusion. In: Proc. of the International Conference on Image Processing, vol. 3, pp. 259–263. IEEE (1998)

    Google Scholar 

  2. Bertalmío, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: Proc. SIGGRAPH, pp. 417–424. ACM Press/Addison-Wesley Publishing Company, New Orleans, LI (2000)

    Chapter  Google Scholar 

  3. Galić, I., Weickert, J., Welk, M., Bruhn, A., Belyaev, A., Seidel, H.-P.: Towards PDE-based image compression. In: Paragios, N., Faugeras, O., Chan, T., Schnörr, C. (eds.) VLSM 2005. LNCS, vol. 3752, pp. 37–48. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Liu, D., Sun, X., Wu, F., Li, S., Zhang, Y.Q.: Image compression with edge-based inpainting. IEEE Transactions on Circuits, Systems and Video Technology 7(10), 1273–1286 (2007)

    Google Scholar 

  5. Belhachmi, Z., Bucur, D., Burgeth, B., Weickert, J.: How to choose interpolation data in images. SIAM Journal on Applied Mathematics 70(1), 333–352 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Schmaltz, C., Weickert, J., Bruhn, A.: Beating the quality of JPEG 2000 with anisotropic diffusion. In: Denzler, J., Notni, G., Süße, H. (eds.) DAGM 2009. LNCS, vol. 5748, pp. 452–461. Springer, Heidelberg (2009)

    Google Scholar 

  7. Mainberger, M., Bruhn, A., Weickert, J., Forchhammer, S.: Edge-based compression of cartoon-like images with homogeneous diffusion. Pattern Recognition 44(9), 1859–1873 (2011)

    Article  Google Scholar 

  8. Mainberger, M., Hoffmann, S., Weickert, J., Tang, C.H., Johannsen, D., Neumann, F., Doerr, B.: Optimising spatial and tonal data for homogeneous diffusion inpainting. In: Bruckstein, A.M., ter Haar Romeny, B.M., Bronstein, A.M., Bronstein, M.M. (eds.) SSVM 2011. LNCS, vol. 6667, pp. 26–37. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Bourquard, A., Unser, M.: Anisotropic interpolation of sparse generalized image samples. IEEE Transactions on Image Processing 22(2), 459–472 (2013)

    Article  MathSciNet  Google Scholar 

  10. Hoeltgen, L., Setzer, S., Weickert, J.: An optimal control approach to find sparse data for Laplace interpolation. In: Heyden, A., Kahl, F., Olsson, C., Oskarsson, M., Tai, X.-C. (eds.) EMMCVPR 2013. LNCS, vol. 8081, pp. 151–164. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  11. Chen, Y., Ranftl, R., Pock, T.: A bi-level view of inpainting - based image compression. Computing Research Repository (2014), http://arxiv.org/abs/1401.4112v2

  12. Gomathi, R., Kumar, A.V.A.: A multiresolution image completion algorithm for compressing digital color images. Journal of Applied Mathematics 2014, Article ID 757318 (2014)

    Google Scholar 

  13. Köstler, H., Stürmer, M., Freundl, C., Rüde, U.: PDE based video compression in real time. Lehrstuhlbericht 07-11, Friedrich-Alexander-Universität Erlangen-Nürnberg (2011)

    Google Scholar 

  14. Ochs, P., Chen, Y., Brox, T., Pock, T.: iPiano: Inertial proximal algorithm for non-convex optimization. SIAM Journal on Imaging Sciences (to appear, 2014)

    Google Scholar 

  15. Ochs, P., Brox, T., Pock, T.: iPiasco: Inertial proximal algorithm for strongly convex optimization. Technical report, Universität Freiburg (2014)

    Google Scholar 

  16. Zaremba, S.: Sur un problème mixte relatif à l’équation de Laplace. Bulletin de l’Académie des Sciences de Cracovie, 313–344 (1910)

    Google Scholar 

  17. Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order. Springer (2001)

    Google Scholar 

  18. Galić, I., Weickert, J., Welk, M., Bruhn, A., Belyaev, A., Seidel, H.: Image compression with anisotropic diffusion. Journal of Mathematical Imaging and Vision 31(2-3), 255–269 (2008)

    Article  MathSciNet  Google Scholar 

  19. Paige, C.C., Saunders, M.A.: Algorithm 583; LSQR: Sparse linear equations and least-squares problems. ACM Transactions on Mathematical Software 8(2), 195–209 (1982)

    Article  MathSciNet  Google Scholar 

  20. Paige, C.C., Saunders, M.A.: LSQR: An algorithm for sparse linear equations and sparse least squares. ACM Transactions on Mathematical Software 8(1), 43–71 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  21. Golub, G.H., Kahan, W.: Calculating the singular values and pseudoinverse of a matrix. Journal of the Society for Industrial and Applied Mathematics 2(2), 205–224 (1965)

    MATH  MathSciNet  Google Scholar 

  22. Davis, T.A.: Algorithm 832: UMFPACK, an unsymmetric-pattern multifrontal method. ACM Transactions on Mathematical Software 30(2), 196–199 (2004)

    Article  MATH  Google Scholar 

  23. Davis, T.A., Duff, I.S.: An unsymmetric-pattern multifrontal method for sparse LU factorization. SIAM Journal on Matrix Analysis and Applications 18(1), 104–158 (1997)

    Article  MathSciNet  Google Scholar 

  24. Davis, T.A., Duff, I.S.: A combined unifrontal/multifrontal method for unsymmetric sparse matrices. ACM Transactions on Mathematical Software 25(1), 1–19 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  25. Chambolle, A., Pock, T.: A first order primal-dual algorithm for convex problems with applications to imaging. Journal of Mathematical Imaging and Vision 40(1), 120–145 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  26. Pock, T., Chambolle, A.: Diagonal preconditioning for first order primal-dual algorithms in convex optimization. In: Metaxas, D., Quan, L., Sanfeliu, A., Van Gool, L. (eds.) 2011 International Conference on Computer Vision (ICCV 2011), pp. 1762–1769. IEEE (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Hoeltgen, L., Weickert, J. (2015). Why Does Non-binary Mask Optimisation Work for Diffusion-Based Image Compression?. In: Tai, XC., Bae, E., Chan, T.F., Lysaker, M. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2015. Lecture Notes in Computer Science, vol 8932. Springer, Cham. https://doi.org/10.1007/978-3-319-14612-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14612-6_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14611-9

  • Online ISBN: 978-3-319-14612-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics