Skip to main content

On the Link between Gaussian Homotopy Continuation and Convex Envelopes

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNIP,volume 8932)

Abstract

The continuation method is a popular heuristic in computer vision for nonconvex optimization. The idea is to start from a simplified problem and gradually deform it to the actual task while tracking the solution. It was first used in computer vision under the name of graduated nonconvexity. Since then, it has been utilized explicitly or implicitly in various applications. In fact, state-of-the-art optical flow and shape estimation rely on a form of continuation. Despite its empirical success, there is little theoretical understanding of this method. This work provides some novel insights into this technique. Specifically, there are many ways to choose the initial problem and many ways to progressively deform it to the original task. However, here we show that when this process is constructed by Gaussian smoothing, it is optimal in a specific sense. In fact, we prove that Gaussian smoothing emerges from the best affine approximation to Vese’s nonlinear PDE. The latter PDE evolves any function to its convex envelope, hence providing the optimal convexification.

Keywords

  • Continuation Method
  • Diffusion Equation
  • Nonconvex Optimization
  • Vese’s PDE

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-14612-6_4
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   69.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-14612-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   89.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balzer, J., Mörwald, T.: Isogeometric finite-elements methods and variational reconstruction tasks in vision - a perfect match. In: CVPR (2012)

    Google Scholar 

  2. Barron, J.: Shapes, Paint, and Light. Ph.D. thesis, EECS Department, University of California, Berkeley (August 2013)

    Google Scholar 

  3. Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In: ICML (2009)

    Google Scholar 

  4. Bengio, Y.: Learning Deep Architectures for AI. Now Publishers Inc. (2009)

    Google Scholar 

  5. Black, M.J., Rangarajan, A.: On the unification of line processes, outlier rejection, and robust statistics with applications in early vision. International Journal of Computer Vision 19(1), 57–91 (1996)

    CrossRef  Google Scholar 

  6. Blake, A., Zisserman, A.: Visual Reconstruction. MIT Press (1987)

    Google Scholar 

  7. Blake, A.: Comparison of the efficiency of deterministic and stochastic algorithms for visual reconstruction. IEEE PAMI 11(1), 2–12 (1989)

    CrossRef  MATH  MathSciNet  Google Scholar 

  8. Boccuto, A., Discepoli, M., Gerace, I., Pucci, P.: A gnc algorithm for deblurring images with interacting discontinuities (2002)

    Google Scholar 

  9. Brox, T.: From pixels to regions: partial differential equations in image analysis. Ph.D. thesis, Saarland University, Germany (April 2005)

    Google Scholar 

  10. Brox, T., Malik, J.: Large displacement optical flow: Descriptor matching in variational motion estimation. IEEE Trans. Pattern Anal. Mach. Intell. 33(3), 500–513 (2011)

    CrossRef  Google Scholar 

  11. Burgers, J.M.: The nonlinear diffusion equation: asymptotic solutions and statistical problems. D. Reidel Pub. Co. (1974)

    Google Scholar 

  12. Chapelle, O., Chi, M., Zien, A.: A continuation method for semi-supervised svms. pp. 185–192. ICML 2006 (2006)

    Google Scholar 

  13. Chapelle, O., Sindhwani, V., Keerthi, S.S.: Optimization techniques for semi-supervised support vector machines. J. Mach. Learn. Res. 9, 203–233 (2008)

    MATH  Google Scholar 

  14. Chapelle, O., Wu, M.: Gradient descent optimization of smoothed information retrieval metrics. Inf. Retr. 13(3), 216–235 (2010)

    CrossRef  Google Scholar 

  15. Chaudhuri, S., Clochard, M., Solar-Lezama, A.: Bridging boolean and quantitative synthesis using smoothed proof search. SIGPLAN Not 49(1), 207–220 (2014)

    Google Scholar 

  16. Chaudhuri, S., Solar-Lezama, A.: Smooth interpretation. In: PLDI. pp. 279–291. ACM (2010)

    Google Scholar 

  17. Chaudhuri, S., Solar-Lezama, A.: Smoothing a program soundly and robustly. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 277–292. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  18. Cohen, L.D., Gorre, A.: Snakes: Sur la convexite de la fonctionnelle denergie (1995)

    Google Scholar 

  19. Coupé, P., Manjón, J.V., Chamberland, M., Descoteaux, M., Hiba, B.: Collaborative patch-based super-resolution for diffusion-weighted images. NeuroImage 83, 245–261 (2013)

    CrossRef  Google Scholar 

  20. Dai, Z., Lücke, J.: Unsupervised learning of translation invariant occlusive components. In: CVPR, pp. 2400–2407 (2012)

    Google Scholar 

  21. Dhillon, P.S., Keerthi, S.S., Bellare, K., Chapelle, O., Sundararajan, S.: Deterministic annealing for semi-supervised structured output learning. In: AISTATS 2012, vol. 15 (2012)

    Google Scholar 

  22. Dufour, R.M., Miller, E.L., Galatsanos, N.P.: Template matching based object recognition with unknown geometric parameters. IEEE Transactions on Image Processing 11(12), 1385–1396 (2002)

    CrossRef  MathSciNet  Google Scholar 

  23. Dvijotham, K., Fazel, M., Todorov, E.: Universal convexification via risk-aversion. In: UAI (2014)

    Google Scholar 

  24. Erhan, D., Manzagol, P.A., Bengio, Y., Bengio, S., Vincent, P.: The difficulty of training deep architectures and the effect of unsupervised pre-training. In: AISTATS, pp. 153–160 (2009)

    Google Scholar 

  25. Felzenszwalb, P.F., Girshick, R.B., McAllester, D.A., Ramanan, D.: Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1627–1645 (2010)

    CrossRef  Google Scholar 

  26. Frank, M., Streich, A.P., Basin, D., Buhmann, J.M.: Multi-assignment clustering for boolean data. J. Mach. Learn. Res. 13(1), 459–489 (2012)

    MATH  MathSciNet  Google Scholar 

  27. Fua, P., Leclerc, Y.: Object-centered surface reconstruction: combining multi-image stereo shading. International Journal on Computer Vision 16(1), 35–56 (1995)

    CrossRef  Google Scholar 

  28. Gehler, P., Chapelle, O.: Deterministic annealing for multiple-instance learning. In: AISTATS 2007, pp. 123–130. Microtome, Brookline (2007)

    Google Scholar 

  29. Geiger, D., Girosi, F.: Coupled markov random fields and mean field theory. In: NIPS, pp. 660–667. Morgan Kaufmann (1989)

    Google Scholar 

  30. Geiger, D., Yuille, A.L.: A common framework for image segmentation. International Journal of Computer Vision 6(3), 227–243 (1991)

    CrossRef  Google Scholar 

  31. Gold, S., Rangarajan, A.: A graduated assignment algorithm for graph matching. IEEE PAMI 18, 377–388 (1996)

    CrossRef  Google Scholar 

  32. Gold, S., Rangarajan, A., Mjolsness, E.: Learning with preknowledge: Clustering with point and graph matching distance measures. In: NIPS, pp. 713–720 (1994)

    Google Scholar 

  33. Held, D., Levinson, J., Thrun, S., Savarese, S.: Combining 3d shape, color, and motion for robust anytime tracking. In: RSS, Berkeley, USA (July 2014)

    Google Scholar 

  34. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief networks. Neural Computation 18(7), 1527–1554 (2006)

    CrossRef  MATH  MathSciNet  Google Scholar 

  35. Hong, B.W., Lu, Z., Sundaramoorthi, G.: A new model and simple algorithms for multi-label mumford-shah problems. In: CVPR (June 2013)

    Google Scholar 

  36. Kim, J., Liu, C., Sha, F., Grauman, K.: Deformable spatial pyramid matching for fast dense correspondences. In: CVPR, pp. 2307–2314. IEEE (2013)

    Google Scholar 

  37. Kim, M., Torre, F.D.: Gaussian processes multiple instance learning, pp. 535–542 (2010)

    Google Scholar 

  38. Kosowsky, J.J., Yuille, A.L.: The invisible hand algorithm: Solving the assignment problem with statistical physics. Neural Networks 7(3), 477–490 (1994)

    CrossRef  MATH  Google Scholar 

  39. Leich, A., Junghans, M., Jentschel, H.J.: Hough transform with GNC. 12th European Signal Processing Conference (EUSIPCO, 2004)

    Google Scholar 

  40. Leordeanu, M., Hebert, M.: Smoothing-based optimization. In: CVPR (2008)

    Google Scholar 

  41. Li, X.: Fine-granularity and spatially-adaptive regularization for projection-based image deblurring. IEEE Transactions on Image Processing 20(4), 971–983 (2011)

    CrossRef  MathSciNet  Google Scholar 

  42. Liu, Z., Qiao, H., Xu, L.: An extended path following algorithm for graph-matching problem. IEEE Trans. Pattern Anal. Mach. Intell. 34(7), 1451–1456 (2012)

    CrossRef  Google Scholar 

  43. Loog, M., Duistermaat, J.J., Florack, L.M.J.: On the behavior of spatial critical points under gaussian blurring (A folklore theorem and scale-space constraints). In: Kerckhove, M. (ed.) Scale-Space 2001. LNCS, vol. 2106, pp. 183–192. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  44. Mairal, J., Bach, F., Ponce, J., Sapiro, G.: ICML, vol. 382, p. 87. ACM (2009)

    Google Scholar 

  45. Malek-Mohammadi, M., Babaie-Zadeh, M., Amini, A., Jutten, C.: Recovery of low-rank matrices under affine constraints via a smoothed rank function. IEEE Transactions on Signal Processing 62(4), 981–992 (2014)

    CrossRef  MathSciNet  Google Scholar 

  46. Mobahi, H., Rao, S., Ma, Y.: Data-driven image completion by image patch subspaces. In: Picture Coding Symposium (2009)

    Google Scholar 

  47. Mobahi, H., Ma, Y., Zitnick, L.: Seeing through the Blur. In: CVPR (2012)

    Google Scholar 

  48. Mohimani, G.H., Babaie-Zadeh, M., Gorodnitsky, I., Jutten, C.: Sparse recovery using smoothed ℓ0 (sl0): Convergence analysis. CoRR abs/1001.5073 (2010)

    Google Scholar 

  49. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math. 42(5), 577–685 (1989)

    CrossRef  MATH  MathSciNet  Google Scholar 

  50. Nielsen, M.: Graduated non-convexity by smoothness focusing. In: Proceedings of the British Machine Vision Conference, pp. 60.1–60.10. BMVA Press (1993)

    Google Scholar 

  51. Nikolova, M., Ng, M.K., Tam, C.P.: Fast nonconvex nonsmooth minimization methods for image restoration and reconstruction. Trans. Img. Proc. 19(12), 3073–3088 (2010)

    CrossRef  MathSciNet  Google Scholar 

  52. Pretto, A., Soatto, S., Menegatti, E.: Scalable dense large-scale mapping and navigation. In: Proc. of: Workshop on Omnidirectional Robot Vision, ICRA (2010)

    Google Scholar 

  53. Price, B.L., Morse, B.S., Cohen, S.: Simultaneous foreground, background, and alpha estimation for image matting. In: CVPR, pp. 2157–2164. IEEE (2010)

    Google Scholar 

  54. Rangarajan, A., Chellappa, R.: Generalized graduated nonconvexity algorithm for maximum a posteriori image estimation, pp. II:127–II:133 (1990)

    Google Scholar 

  55. Rose, K., Gurewitz, E., Fox, G.: A deterministic annealing approach to clustering. Pattern Recognition Letters 11(9), 589–594 (1990)

    CrossRef  MATH  Google Scholar 

  56. Rossi, F., Villa-Vialaneix, N.: Optimizing an organized modularity measure for topographic graph clustering: A deterministic annealing approach. Neurocomputing 73(7-9), 1142–1163 (2010)

    CrossRef  Google Scholar 

  57. Saragih, J.: Deformable face alignment via local measurements and global constraints, pp. 187–207. Springer, Heidelberg (2013)

    Google Scholar 

  58. Shroff, N., Turaga, P.K., Chellappa, R.: Manifold precis: An annealing technique for diverse sampling of manifolds. In: NIPS, pp. 154–162 (2011)

    Google Scholar 

  59. Sindhwani, V., Keerthi, S.S., Chapelle, O.: Deterministic annealing for semi-supervised kernel machines. In: ICML 2006, pp. 841–848. ACM, New York (2006)

    Google Scholar 

  60. Smith, N.A., Eisner, J.: Annealing techniques for unsupervised statistical language learning. In: ACL, Barcelona, Spain, pp. 486–493 (July 2004)

    Google Scholar 

  61. Stoll, M., Volz, S., Bruhn, A.: Joint trilateral filtering for multiframe optical flow. In: ICIP, pp. 3845–3849 (2013)

    Google Scholar 

  62. Sun, D., Roth, S., Black, M.J.: Secrets of optical flow estimation and their principles. In: CVPR, pp. 2432–2439. IEEE (2010)

    Google Scholar 

  63. Terzopoulos, D.: The computation of visible-surface representations. IEEE Trans. Pattern Anal. Mach. Intell. 10(4), 417–438 (1988)

    CrossRef  MATH  Google Scholar 

  64. Tirthapura, S., Sharvit, D., Klein, P., Kimia, B.: Indexing based on edit-distance matching of shape graphs. In: SPIE International Symposium on Voice, Video, and Data Communications, pp. 25–36 (1998)

    Google Scholar 

  65. Trzasko, J., Manduca, A.: Highly undersampled magnetic resonance image reconstruction via homotopic ℓ0 -minimization. IEEE Trans. Med. Imaging 28(1), 106–121 (2009)

    CrossRef  Google Scholar 

  66. Vese, L.: A method to convexify functions via curve evolution. Commun. Partial Differ. Equations 24(9-10), 1573–1591 (1999)

    CrossRef  MATH  MathSciNet  Google Scholar 

  67. Vural, E., Frossard, P.: Analysis of descent-based image registration. SIAM J. Imaging Sciences 6(4), 2310–2349 (2013)

    CrossRef  MATH  MathSciNet  Google Scholar 

  68. Widder, D.V.: The Heat Equation. Academic Press (1975)

    Google Scholar 

  69. Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2009)

    CrossRef  Google Scholar 

  70. Wu, Z., Tan, P.: Calibrating photometric stereo by holistic reflectance symmetry analysis, pp. 1498–1505. IEEE (2013)

    Google Scholar 

  71. Wu, Z.: The Effective Energy Transformation Scheme as a Special Continuation Approach to Global Optimization with Application to Molecular Conformation. SIAM J. on Optimization 6, 748–768 (1996)

    CrossRef  MATH  Google Scholar 

  72. Yuille, A.: Energy Functions for Early Vision and Analog Networks. A.I. memo, Defense Technical Information Center (1987)

    Google Scholar 

  73. Yuille, A.L.: Generalized deformable models, statistical physics, and matching problems. Neural Computation 2, 1–24 (1990)

    CrossRef  Google Scholar 

  74. Yuille, A., Geiger, D., Bulthoff, H.: Stereo integration, mean field theory and psychophysics. In: Faugeras, O. (ed.) ECCV 1990. LNCS, vol. 427, pp. 71–82. Springer, Heidelberg (1990)

    CrossRef  Google Scholar 

  75. Yuille, A.L., Peterson, C., Honda, K.: Deformable templates, robust statistics, and hough transforms, San Diego, CA, pp. 166–174. International Society for Optics and Photonics (1991)

    Google Scholar 

  76. Yuille, A.L., Stolorz, P.E., Utans, J.: Statistical physics, mixtures of distributions, and the em algorithm. Neural Computation 6(2), 334–340 (1994)

    CrossRef  Google Scholar 

  77. Zaslavskiy, M., Bach, F., Vert, J.P.: A path following algorithm for the graph matching problem. IEEE PAMI (2009)

    Google Scholar 

  78. Zerubia, J., Chellappa, R.: Mean field annealing using compound gauss-markov random fields for edge detection and image estimation. IEEE Transactions on Neural Networks 4(4), 703–709 (1993)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Mobahi, H., Fisher, J.W. (2015). On the Link between Gaussian Homotopy Continuation and Convex Envelopes. In: Tai, XC., Bae, E., Chan, T.F., Lysaker, M. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2015. Lecture Notes in Computer Science, vol 8932. Springer, Cham. https://doi.org/10.1007/978-3-319-14612-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14612-6_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14611-9

  • Online ISBN: 978-3-319-14612-6

  • eBook Packages: Computer ScienceComputer Science (R0)