Balzer, J., Mörwald, T.: Isogeometric finite-elements methods and variational reconstruction tasks in vision - a perfect match. In: CVPR (2012)
Google Scholar
Barron, J.: Shapes, Paint, and Light. Ph.D. thesis, EECS Department, University of California, Berkeley (August 2013)
Google Scholar
Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In: ICML (2009)
Google Scholar
Bengio, Y.: Learning Deep Architectures for AI. Now Publishers Inc. (2009)
Google Scholar
Black, M.J., Rangarajan, A.: On the unification of line processes, outlier rejection, and robust statistics with applications in early vision. International Journal of Computer Vision 19(1), 57–91 (1996)
CrossRef
Google Scholar
Blake, A., Zisserman, A.: Visual Reconstruction. MIT Press (1987)
Google Scholar
Blake, A.: Comparison of the efficiency of deterministic and stochastic algorithms for visual reconstruction. IEEE PAMI 11(1), 2–12 (1989)
CrossRef
MATH
MathSciNet
Google Scholar
Boccuto, A., Discepoli, M., Gerace, I., Pucci, P.: A gnc algorithm for deblurring images with interacting discontinuities (2002)
Google Scholar
Brox, T.: From pixels to regions: partial differential equations in image analysis. Ph.D. thesis, Saarland University, Germany (April 2005)
Google Scholar
Brox, T., Malik, J.: Large displacement optical flow: Descriptor matching in variational motion estimation. IEEE Trans. Pattern Anal. Mach. Intell. 33(3), 500–513 (2011)
CrossRef
Google Scholar
Burgers, J.M.: The nonlinear diffusion equation: asymptotic solutions and statistical problems. D. Reidel Pub. Co. (1974)
Google Scholar
Chapelle, O., Chi, M., Zien, A.: A continuation method for semi-supervised svms. pp. 185–192. ICML 2006 (2006)
Google Scholar
Chapelle, O., Sindhwani, V., Keerthi, S.S.: Optimization techniques for semi-supervised support vector machines. J. Mach. Learn. Res. 9, 203–233 (2008)
MATH
Google Scholar
Chapelle, O., Wu, M.: Gradient descent optimization of smoothed information retrieval metrics. Inf. Retr. 13(3), 216–235 (2010)
CrossRef
Google Scholar
Chaudhuri, S., Clochard, M., Solar-Lezama, A.: Bridging boolean and quantitative synthesis using smoothed proof search. SIGPLAN Not 49(1), 207–220 (2014)
Google Scholar
Chaudhuri, S., Solar-Lezama, A.: Smooth interpretation. In: PLDI. pp. 279–291. ACM (2010)
Google Scholar
Chaudhuri, S., Solar-Lezama, A.: Smoothing a program soundly and robustly. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 277–292. Springer, Heidelberg (2011)
CrossRef
Google Scholar
Cohen, L.D., Gorre, A.: Snakes: Sur la convexite de la fonctionnelle denergie (1995)
Google Scholar
Coupé, P., Manjón, J.V., Chamberland, M., Descoteaux, M., Hiba, B.: Collaborative patch-based super-resolution for diffusion-weighted images. NeuroImage 83, 245–261 (2013)
CrossRef
Google Scholar
Dai, Z., Lücke, J.: Unsupervised learning of translation invariant occlusive components. In: CVPR, pp. 2400–2407 (2012)
Google Scholar
Dhillon, P.S., Keerthi, S.S., Bellare, K., Chapelle, O., Sundararajan, S.: Deterministic annealing for semi-supervised structured output learning. In: AISTATS 2012, vol. 15 (2012)
Google Scholar
Dufour, R.M., Miller, E.L., Galatsanos, N.P.: Template matching based object recognition with unknown geometric parameters. IEEE Transactions on Image Processing 11(12), 1385–1396 (2002)
CrossRef
MathSciNet
Google Scholar
Dvijotham, K., Fazel, M., Todorov, E.: Universal convexification via risk-aversion. In: UAI (2014)
Google Scholar
Erhan, D., Manzagol, P.A., Bengio, Y., Bengio, S., Vincent, P.: The difficulty of training deep architectures and the effect of unsupervised pre-training. In: AISTATS, pp. 153–160 (2009)
Google Scholar
Felzenszwalb, P.F., Girshick, R.B., McAllester, D.A., Ramanan, D.: Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1627–1645 (2010)
CrossRef
Google Scholar
Frank, M., Streich, A.P., Basin, D., Buhmann, J.M.: Multi-assignment clustering for boolean data. J. Mach. Learn. Res. 13(1), 459–489 (2012)
MATH
MathSciNet
Google Scholar
Fua, P., Leclerc, Y.: Object-centered surface reconstruction: combining multi-image stereo shading. International Journal on Computer Vision 16(1), 35–56 (1995)
CrossRef
Google Scholar
Gehler, P., Chapelle, O.: Deterministic annealing for multiple-instance learning. In: AISTATS 2007, pp. 123–130. Microtome, Brookline (2007)
Google Scholar
Geiger, D., Girosi, F.: Coupled markov random fields and mean field theory. In: NIPS, pp. 660–667. Morgan Kaufmann (1989)
Google Scholar
Geiger, D., Yuille, A.L.: A common framework for image segmentation. International Journal of Computer Vision 6(3), 227–243 (1991)
CrossRef
Google Scholar
Gold, S., Rangarajan, A.: A graduated assignment algorithm for graph matching. IEEE PAMI 18, 377–388 (1996)
CrossRef
Google Scholar
Gold, S., Rangarajan, A., Mjolsness, E.: Learning with preknowledge: Clustering with point and graph matching distance measures. In: NIPS, pp. 713–720 (1994)
Google Scholar
Held, D., Levinson, J., Thrun, S., Savarese, S.: Combining 3d shape, color, and motion for robust anytime tracking. In: RSS, Berkeley, USA (July 2014)
Google Scholar
Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief networks. Neural Computation 18(7), 1527–1554 (2006)
CrossRef
MATH
MathSciNet
Google Scholar
Hong, B.W., Lu, Z., Sundaramoorthi, G.: A new model and simple algorithms for multi-label mumford-shah problems. In: CVPR (June 2013)
Google Scholar
Kim, J., Liu, C., Sha, F., Grauman, K.: Deformable spatial pyramid matching for fast dense correspondences. In: CVPR, pp. 2307–2314. IEEE (2013)
Google Scholar
Kim, M., Torre, F.D.: Gaussian processes multiple instance learning, pp. 535–542 (2010)
Google Scholar
Kosowsky, J.J., Yuille, A.L.: The invisible hand algorithm: Solving the assignment problem with statistical physics. Neural Networks 7(3), 477–490 (1994)
CrossRef
MATH
Google Scholar
Leich, A., Junghans, M., Jentschel, H.J.: Hough transform with GNC. 12th European Signal Processing Conference (EUSIPCO, 2004)
Google Scholar
Leordeanu, M., Hebert, M.: Smoothing-based optimization. In: CVPR (2008)
Google Scholar
Li, X.: Fine-granularity and spatially-adaptive regularization for projection-based image deblurring. IEEE Transactions on Image Processing 20(4), 971–983 (2011)
CrossRef
MathSciNet
Google Scholar
Liu, Z., Qiao, H., Xu, L.: An extended path following algorithm for graph-matching problem. IEEE Trans. Pattern Anal. Mach. Intell. 34(7), 1451–1456 (2012)
CrossRef
Google Scholar
Loog, M., Duistermaat, J.J., Florack, L.M.J.: On the behavior of spatial critical points under gaussian blurring (A folklore theorem and scale-space constraints). In: Kerckhove, M. (ed.) Scale-Space 2001. LNCS, vol. 2106, pp. 183–192. Springer, Heidelberg (2001)
CrossRef
Google Scholar
Mairal, J., Bach, F., Ponce, J., Sapiro, G.: ICML, vol. 382, p. 87. ACM (2009)
Google Scholar
Malek-Mohammadi, M., Babaie-Zadeh, M., Amini, A., Jutten, C.: Recovery of low-rank matrices under affine constraints via a smoothed rank function. IEEE Transactions on Signal Processing 62(4), 981–992 (2014)
CrossRef
MathSciNet
Google Scholar
Mobahi, H., Rao, S., Ma, Y.: Data-driven image completion by image patch subspaces. In: Picture Coding Symposium (2009)
Google Scholar
Mobahi, H., Ma, Y., Zitnick, L.: Seeing through the Blur. In: CVPR (2012)
Google Scholar
Mohimani, G.H., Babaie-Zadeh, M., Gorodnitsky, I., Jutten, C.: Sparse recovery using smoothed ℓ0 (sl0): Convergence analysis. CoRR abs/1001.5073 (2010)
Google Scholar
Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math. 42(5), 577–685 (1989)
CrossRef
MATH
MathSciNet
Google Scholar
Nielsen, M.: Graduated non-convexity by smoothness focusing. In: Proceedings of the British Machine Vision Conference, pp. 60.1–60.10. BMVA Press (1993)
Google Scholar
Nikolova, M., Ng, M.K., Tam, C.P.: Fast nonconvex nonsmooth minimization methods for image restoration and reconstruction. Trans. Img. Proc. 19(12), 3073–3088 (2010)
CrossRef
MathSciNet
Google Scholar
Pretto, A., Soatto, S., Menegatti, E.: Scalable dense large-scale mapping and navigation. In: Proc. of: Workshop on Omnidirectional Robot Vision, ICRA (2010)
Google Scholar
Price, B.L., Morse, B.S., Cohen, S.: Simultaneous foreground, background, and alpha estimation for image matting. In: CVPR, pp. 2157–2164. IEEE (2010)
Google Scholar
Rangarajan, A., Chellappa, R.: Generalized graduated nonconvexity algorithm for maximum a posteriori image estimation, pp. II:127–II:133 (1990)
Google Scholar
Rose, K., Gurewitz, E., Fox, G.: A deterministic annealing approach to clustering. Pattern Recognition Letters 11(9), 589–594 (1990)
CrossRef
MATH
Google Scholar
Rossi, F., Villa-Vialaneix, N.: Optimizing an organized modularity measure for topographic graph clustering: A deterministic annealing approach. Neurocomputing 73(7-9), 1142–1163 (2010)
CrossRef
Google Scholar
Saragih, J.: Deformable face alignment via local measurements and global constraints, pp. 187–207. Springer, Heidelberg (2013)
Google Scholar
Shroff, N., Turaga, P.K., Chellappa, R.: Manifold precis: An annealing technique for diverse sampling of manifolds. In: NIPS, pp. 154–162 (2011)
Google Scholar
Sindhwani, V., Keerthi, S.S., Chapelle, O.: Deterministic annealing for semi-supervised kernel machines. In: ICML 2006, pp. 841–848. ACM, New York (2006)
Google Scholar
Smith, N.A., Eisner, J.: Annealing techniques for unsupervised statistical language learning. In: ACL, Barcelona, Spain, pp. 486–493 (July 2004)
Google Scholar
Stoll, M., Volz, S., Bruhn, A.: Joint trilateral filtering for multiframe optical flow. In: ICIP, pp. 3845–3849 (2013)
Google Scholar
Sun, D., Roth, S., Black, M.J.: Secrets of optical flow estimation and their principles. In: CVPR, pp. 2432–2439. IEEE (2010)
Google Scholar
Terzopoulos, D.: The computation of visible-surface representations. IEEE Trans. Pattern Anal. Mach. Intell. 10(4), 417–438 (1988)
CrossRef
MATH
Google Scholar
Tirthapura, S., Sharvit, D., Klein, P., Kimia, B.: Indexing based on edit-distance matching of shape graphs. In: SPIE International Symposium on Voice, Video, and Data Communications, pp. 25–36 (1998)
Google Scholar
Trzasko, J., Manduca, A.: Highly undersampled magnetic resonance image reconstruction via homotopic ℓ0 -minimization. IEEE Trans. Med. Imaging 28(1), 106–121 (2009)
CrossRef
Google Scholar
Vese, L.: A method to convexify functions via curve evolution. Commun. Partial Differ. Equations 24(9-10), 1573–1591 (1999)
CrossRef
MATH
MathSciNet
Google Scholar
Vural, E., Frossard, P.: Analysis of descent-based image registration. SIAM J. Imaging Sciences 6(4), 2310–2349 (2013)
CrossRef
MATH
MathSciNet
Google Scholar
Widder, D.V.: The Heat Equation. Academic Press (1975)
Google Scholar
Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2009)
CrossRef
Google Scholar
Wu, Z., Tan, P.: Calibrating photometric stereo by holistic reflectance symmetry analysis, pp. 1498–1505. IEEE (2013)
Google Scholar
Wu, Z.: The Effective Energy Transformation Scheme as a Special Continuation Approach to Global Optimization with Application to Molecular Conformation. SIAM J. on Optimization 6, 748–768 (1996)
CrossRef
MATH
Google Scholar
Yuille, A.: Energy Functions for Early Vision and Analog Networks. A.I. memo, Defense Technical Information Center (1987)
Google Scholar
Yuille, A.L.: Generalized deformable models, statistical physics, and matching problems. Neural Computation 2, 1–24 (1990)
CrossRef
Google Scholar
Yuille, A., Geiger, D., Bulthoff, H.: Stereo integration, mean field theory and psychophysics. In: Faugeras, O. (ed.) ECCV 1990. LNCS, vol. 427, pp. 71–82. Springer, Heidelberg (1990)
CrossRef
Google Scholar
Yuille, A.L., Peterson, C., Honda, K.: Deformable templates, robust statistics, and hough transforms, San Diego, CA, pp. 166–174. International Society for Optics and Photonics (1991)
Google Scholar
Yuille, A.L., Stolorz, P.E., Utans, J.: Statistical physics, mixtures of distributions, and the em algorithm. Neural Computation 6(2), 334–340 (1994)
CrossRef
Google Scholar
Zaslavskiy, M., Bach, F., Vert, J.P.: A path following algorithm for the graph matching problem. IEEE PAMI (2009)
Google Scholar
Zerubia, J., Chellappa, R.: Mean field annealing using compound gauss-markov random fields for edge detection and image estimation. IEEE Transactions on Neural Networks 4(4), 703–709 (1993)
CrossRef
Google Scholar