Skip to main content

Multi-utility Learning: Structured-Output Learning with Multiple Annotation-Specific Loss Functions

  • Conference paper
Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8932))

  • 2571 Accesses

Abstract

Structured-output learning is a challenging problem; particularly so because of the difficulty in obtaining large datasets of fully labelled instances for training. In this paper we try to overcome this difficulty by presenting a multi-utility learning framework for structured prediction that can learn from training instances with different forms of supervision. We propose a unified technique for inferring the loss functions most suitable for quantifying the consistency of solutions with the given weak annotation. We demonstrate the effectiveness of our framework on the challenging semantic image segmentation problem for which a wide variety of annotations can be used. For instance, the popular training datasets for semantic segmentation are composed of images with hard-to-generate full pixel labellings, as well as images with easy-to-obtain weak annotations, such as bounding boxes around objects, or image-level labels that specify which object categories are present in an image. Experimental evaluation shows that the use of annotation-specific loss functions dramatically improves segmentation accuracy compared to the baseline system where only one type of weak annotation is used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. PAMI 23(11), 1222–1239 (2001)

    Article  Google Scholar 

  2. Delong, A., Osokin, A., Isack, H.N., Boykov, Y.: Fast Approximate Energy Minimization with Label Costs. IJCV 96(1), 1–27 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  3. Heitz, G., Koller, D.: Learning spatial context: Using stuff to find things. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 30–43. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Joachims, T., Finley, T., Yu, C.: Cutting-plane training of structural SVMs. Machine Learning 77(1), 27–59 (2009)

    Article  MATH  Google Scholar 

  5. Kumar, M.P., Turki, H., Preston, D., Koller, D.: Learning specific-class segmentation from diverse data. In: ICCV, pp. 1800–1807 (November 2011)

    Google Scholar 

  6. Ladický, Ľ., Sturgess, P., Alahari, K., Russell, C., Torr, P.H.S.: What, Where and How Many? Combining Object Detectors and CRFs. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 424–437. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Lempitsky, V., Kohli, P., Rother, C., Sharp, T.: Image segmentation with a bounding box prior. In: ICCV, pp. 277–284 (September 2009)

    Google Scholar 

  8. Liu, K., Raghavan, S., Nelesen, S., Linder, C.R., Warnow, T.: Rapid and accurate large-scale coestimation of sequence alignments and phylogenetic trees. Science (New York, N.Y.) 324(5934), 1561–1564 (2009)

    Article  Google Scholar 

  9. Pletscher, P., Kohli, P.: Learning low-order models for enforcing high-order statistics. In: AISTATS (2012)

    Google Scholar 

  10. Quattoni, A., Wang, S., Morency, L.P., Collins, M., Darrell, T.: Hidden conditional random fields. PAMI 29(10), 1848–1853 (2007)

    Article  Google Scholar 

  11. Schwing, A.G., Hazan, T., Pollefeys, M., Urtasun, R.: Efficient Structured Prediction with Latent Variables for General Graphical Models. In: ICML (2012)

    Google Scholar 

  12. Shotton, J., Johnson, M., Cipolla, R.: Semantic texton forests for image categorization and segmentation. In: CVPR (June 2008)

    Google Scholar 

  13. Shotton, J., Winn, J.M., Rother, C., Criminisi, A.: textonBoost: Joint appearance, shape and context modeling for multi-class object recognition and segmentation. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 1–15. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Tarlow, D., Zemel, R.S.: Structured Output Learning with High Order Loss Functions. In: AISTATS (2012)

    Google Scholar 

  15. Taskar, B., Chatalbashev, V., Koller, D.: Learning associative Markov networks. In: ICML. pp. 102–109, Banff, Alberta, Canada (2004)

    Google Scholar 

  16. Tighe, J., Lazebnik, S.: SuperParsing: Scalable Nonparametric Image Parsing with Superpixels. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 352–365. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  17. Tighe, J., Lazebnik, S.: Finding Things: Image Parsing with Regions and Per-Exemplar Detectors. In: CVPR, pp. 3001–3008 (June 2013)

    Google Scholar 

  18. Torralba, A., Russel, B.C., Yuen, J.: LabelMe: Online Image Annotation and Applications. Proceedings of the IEEE 98(8), 1467–1484 (2010)

    Article  Google Scholar 

  19. Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y.: Large margin methods for structured and interdependent output variables. JMLR 6, 1453–1484 (2006)

    MathSciNet  Google Scholar 

  20. Vezhnevets, A., Ferrari, V., Buhmann, J.M.: Weakly Supervised Semantic Segmentation with a Multi-Image Model. In: ICCV, Barcelona, ES (2011)

    Google Scholar 

  21. Vezhnevets, A., Ferrari, V., Buhmann, J.M.: Weakly Supervised Structured Output Learning for Semantic Segmentation. In: CVPR, Providence, RI (2012)

    Google Scholar 

  22. Yao, J., Fidler, S., Urtasun, R.: Describing the scene as a whole: Joint object detection, scene classification and semantic segmentation. In: CVPR (June 2012)

    Google Scholar 

  23. Yu, C.N.J., Joachims, T.: Learning structural SVMs with latent variables. In: ICML, Montreal, Canada (2009)

    Google Scholar 

  24. Yuille, A., Rangarajan, A.: The concave-convex procedure (CCCP). In: NIPS (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Shapovalov, R., Vetrov, D., Osokin, A., Kohli, P. (2015). Multi-utility Learning: Structured-Output Learning with Multiple Annotation-Specific Loss Functions. In: Tai, XC., Bae, E., Chan, T.F., Lysaker, M. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2015. Lecture Notes in Computer Science, vol 8932. Springer, Cham. https://doi.org/10.1007/978-3-319-14612-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14612-6_30

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14611-9

  • Online ISBN: 978-3-319-14612-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics