Skip to main content

Two-Dimensional Variational Mode Decomposition

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8932))

Abstract

In this paper we propose a variational method to adaptively decompose an image into few different modes of separate spectral bands, which are unknown before. A popular method for recursive one dimensional signal decomposition is the Empirical Mode Decomposition algorithm, introduced by Huang in the nineties. This algorithm, as well as its 2D extension, though extensively used, suffers from a lack of exact mathematical model, interpolation choice, and sensitivity to both noise and sampling. Other state-of-the-art models include synchrosqueezing, the empirical wavelet transform, and recursive variational decomposition into smooth signals and residuals. Here, we have created an entirely non-recursive 2D variational mode decomposition (2D-VMD) model, where the modes are extracted concurrently. The model looks for a number of 2D modes and their respective center frequencies, such that the bandlimited modes reproduce the input image (exactly or in least-squares sense). Preliminary results show excellent performance on both synthetic and real images. Running this algorithm on a peptide microscopy image yields accurate, timely, and autonomous segmentation - pertinent in the fields of biochemistry and nanoscience.

This work is supported by the National Science Foundation (NSF) under grant DMS-1118971, UC Lab Fees Research grant 12-LR-236660, the Swiss National Science Foundation (SNF) grant P300P2_147778, and the W. M. Keck Foundation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bertsekas, D.P.: Multiplier methods: A survey. Automatica 12(2), 133–145 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bertsekas, D.P.: Constrained optimization and Lagrange Multiplier methods, vol. 1. Academic Press, Boston (1982)

    MATH  Google Scholar 

  3. Bülow, T., Sommer, G.: A Novel Approach to the 2D Analytic Signal. In: Solina, F., Leonardis, A. (eds.) CAIP 1999. LNCS, vol. 1689, pp. 25–32. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  4. Candes, E.J., Donoho, D.L.: Curvelets: A Surprisingly Effective Nonadaptive Representation for Objects with Edges. In: Curve and Surface Fitting, pp. 105–120 (1999)

    Google Scholar 

  5. Claridge, S.A., Thomas, J.C., Silverman, M.A., Schwartz, J.J., Yang, Y., Wang, C., Weiss, P.S.: Differentiating Amino Acid Residues and Side Chain Orientations in Peptides Using Scanning Tunneling Microscopy. Journal of the American Chemical Society (November 2013)

    Google Scholar 

  6. Clausel, M., Oberlin, T., Perrier, V.: The Monogenic Synchrosqueezed Wavelet Transform: A tool for the Decomposition/Demodulation of AM-FM images (November 2012), http://arxiv.org/abs/1211.5082

  7. Daubechies, I.: Orthonormal bases of compactly supported wavelets. Communications on Pure and Applied Mathematics 41(7), 909–996 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  8. Daubechies, I., Lu, J., Wu, H.T.: Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool. Applied and Computational Harmonic Analysis 30(2), 243–261 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. Do, M., Vetterli, M.: Pyramidal directional filter banks and curvelets. In: Proceedings of the 2001 International Conference on Image Processing, vol. 2, pp. 158–161. IEEE (2001)

    Google Scholar 

  10. Dragomiretskiy, K., Zosso, D.: Variational Mode Decomposition. IEEE Transactions on Signal Processing 62(3), 531–544 (2014)

    Article  MathSciNet  Google Scholar 

  11. Gilles, J.: Multiscale Texture Separation. Multiscale Modeling & Simulation 10(4), 1409–1427 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gilles, J.: Empirical Wavelet Transform. IEEE Transactions on Signal Processing 61(16), 3999–4010 (2013)

    Article  MathSciNet  Google Scholar 

  13. Gilles, J., Tran, G., Osher, S.: 2D Empirical Transforms. Wavelets, Ridgelets, and Curvelets Revisited. SIAM Journal on Imaging Sciences 7(1), 157–186 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  14. Guo, K., Labate, D.: Optimally Sparse Multidimensional Representation Using Shearlets. SIAM Journal on Mathematical Analysis 39(1), 298–318 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hestenes, M.R.: Multiplier and Gradient Methods. Journal of Optimization Theory and Applications 4(5), 303–320 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  16. Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C., Liu, H.H.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 454, 903–995 (1971)

    Article  MathSciNet  Google Scholar 

  17. Labate, D., Lim, W.Q., Kutyniok, G., Weiss, G.: Sparse Multidimensional Representation using Shearlets. In: Papadakis, M., Laine, A.F., Unser, M.A. (eds.) Optics & Photonics, pp. 1–9. International Society for Optics and Photonics (August 2005)

    Google Scholar 

  18. Mallat, S.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 11(7), 674–693 (1989)

    Article  MATH  Google Scholar 

  19. Nocedal, J., Wright, S.J.: Numerical optimization, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  20. Nunes, J., Bouaoune, Y., Delechelle, E., Niang, O., Bunel, P.: Image analysis by bidimensional empirical mode decomposition. Image and Vision Computing 21(12), 1019–1026 (2003)

    Article  Google Scholar 

  21. Rockafellar, R.T.: A dual approach to solving nonlinear programming problems by unconstrained optimization. Mathematical Programming 5(1), 354–373 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  22. Schmitt, J., Pustelnik, N., Borgnat, P., Flandrin, P.: 2D Hilbert-Huang Transform. In: Proc. Int. Conf. Acoust., Speech Signal Process. (2014)

    Google Scholar 

  23. Schmitt, J., Pustelnik, N., Borgnat, P., Flandrin, P., Condat, L.: 2-D Prony-Huang Transform: A New Tool for 2-D Spectral Analysis, p. 24 (April 2014), http://arxiv.org/abs/1404.7680

  24. Lee, T.S.: Image representation using 2D Gabor wavelets. IEEE Transactions on Pattern Analysis and Machine Intelligence 18(10), 959–971 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Dragomiretskiy, K., Zosso, D. (2015). Two-Dimensional Variational Mode Decomposition. In: Tai, XC., Bae, E., Chan, T.F., Lysaker, M. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2015. Lecture Notes in Computer Science, vol 8932. Springer, Cham. https://doi.org/10.1007/978-3-319-14612-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14612-6_15

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14611-9

  • Online ISBN: 978-3-319-14612-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics