Advertisement

Algebraization of Maximal Rank Webs

  • Jorge Vitório Pereira
  • Luc Pirio
Chapter
  • 739 Downloads
Part of the IMPA Monographs book series (IMPA, volume 2)

Abstract

This chapter is devoted to the following result.

Bibliography

  1. 5.
    Andreotti, A.: Théorèmes de dépendance algébrique sur les espaces complexes pseudo-concaves. Bull. Soc. Math. France 91, 1–38 (1963). http://www.numdam.org/item?id=BSMF_1963__91__1_0
  2. 16.
    Blaschke, W.: Über die Tangenten einer ebenen Kurve fünfter Klasse. Abh. Math. Hamburg Univ. 9, 313–317 (1933). Doi:10.1007/BF02940657CrossRefMathSciNetGoogle Scholar
  3. 21.
    Bol, G.: Über ein bemerkenswertes Fünfgewebe in der Ebene. Abh. Math. Hamburg Univ. 11, 387–393 (1936). Doi:10.1007/bf02940735CrossRefMathSciNetGoogle Scholar
  4. 34.
    Chern, S.-S., Griffiths, P.A.: Abel’s theorem and webs. Jahresberichte der Deutsch. Math.-Ver. 80, 13–110 (1978). http://eudml.org/doc/146681
  5. 36.
    Chern, S.-S., Griffiths, P.A.: Corrections and addenda to our paper:“Abel’s theorem and webs”. Jahresberichte der Deutsch. Math.-Ver. 83, 78–83 (1981)zbMATHMathSciNetGoogle Scholar
  6. 63.
    Griffiths, P.A., Harris, J.: Principles of algebraic geometry. Pure and Applied Mathematics. Wiley-Interscience, New York (1978)zbMATHGoogle Scholar
  7. 67.
    Harris, J.: A bound on the geometric genus of projective varieties. Ann. Sc. Norm. Super. 8, 35–68 (1981). http://www.numdam.org/item?id=ASNSP_1981_4_8_1_35_0
  8. 69.
    Hartshorne, R.: Cohomological dimension of algebraic varieties. Ann. Math. 88, 403–450 (1968). Doi:10.2307/1970720CrossRefzbMATHMathSciNetGoogle Scholar
  9. 70.
    Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, vol. 52. Springer, New York (1977)Google Scholar
  10. 117.
    Poincaré, H.: Sur les surfaces de translation et les fonctions abéliennes. Bull. Soc. Math. France 29, 61–86 (1901)zbMATHMathSciNetGoogle Scholar
  11. 130.
    Trépreau, J.-M.: Algébrisation des Tissus de Codimension 1 – La généralisation d’un Théorème de Bol. In: Griffiths, P.A. (ed.) Inspired by Chern, Nankai Tracts in Mathematics, vol. 11, pp. 399–433. World Scientific, Singapore (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Jorge Vitório Pereira
    • 1
  • Luc Pirio
    • 2
  1. 1.Instituto de Matemática Pura e AplicadaRio de JaneiroBrazil
  2. 2.Institut de Recherches Mathématiques de Rennes IRMAR, UMR 6625 du CNRSUniversité Rennes 1RennesFrance

Personalised recommendations