Advertisement

Abel’s Addition Theorem

  • Jorge Vitório Pereira
  • Luc Pirio
Chapter
  • 768 Downloads
Part of the IMPA Monographs book series (IMPA, volume 2)

Abstract

So far, not many examples of abelian relations for webs appeared in this book. Besides the abelian relations for hexagonal 3-webs, the polynomial abelian relations for parallel webs (see Example 2.2.1), and the abelian relations for the planar quasi-parallel webs discussed in Example 2.2.4, which are by the way also polynomial, no other example was studied.

Keywords

Irreducible Component Abelian Variety Maximal Rank Projective Curve Geometric Genus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Bibliography

  1. 7.
    Arbarello, E., Cornalba, M., Griffiths, P.A., Harris, J.: Geometry of Algebraic Curves, vol. I. Grundlehren der Mathematischen Wissenschaften, vol. 267. Springer, New York (1985)Google Scholar
  2. 9.
    Ballico, E.: The bound of the genus for reducible curves. Rend. Mat. Appl. 7, 177–179 (1987)zbMATHMathSciNetGoogle Scholar
  3. 10.
    Barlet, D.: Le faisceau ω X sur un espace analytique X de dimension pure. In: Norguet, F. (ed.) Fonctions de Plusieurs Variables Complexes III. Lecture Notes in Mathematics, vol. 670, pp. 187–204. Springer, Berlin (1978). Doi:10.1007/BFb0064400CrossRefGoogle Scholar
  4. 11.
    Barth, W., Hulek, C., Peters, C., Van de Ven, A.: Compact Complex Surfaces. Springer, New York (2004)CrossRefzbMATHGoogle Scholar
  5. 34.
    Chern, S.-S., Griffiths, P.A.: Abel’s theorem and webs. Jahresberichte der Deutsch. Math.-Ver. 80, 13–110 (1978). http://eudml.org/doc/146681
  6. 49.
    El Haouzi, A.: Sur la torsion des courants \(\overline{\partial }\)-fermés sur un espace analytique complexe. C. R. Acad. Sci. Paris Sér. I Math. 332, 205–208 (2001). Doi:10.1016/S0764-4442(00)01804-8CrossRefzbMATHGoogle Scholar
  7. 67.
    Harris, J.: A bound on the geometric genus of projective varieties. Ann. Sc. Norm. Super. 8, 35–68 (1981). http://www.numdam.org/item?id=ASNSP_1981_4_8_1_35_0
  8. 68.
    Harris, J.: Curves in projective space. With the collaboration of David Eisenbud. Séminaire de Mathématiques Supérieures, 85, Presses de l’Université de Montréal, Montréal (1982)Google Scholar
  9. 70.
    Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, vol. 52. Springer, New York (1977)Google Scholar
  10. 71.
    Hartshorne, R.: The genus of space curves. Ann. Univ. Ferrara Sez. 40, 207–223 (1994). Doi:10.1007/BF02834521MathSciNetGoogle Scholar
  11. 79.
    Henkin, G., Passare, M.: Abelian differentials on singular varieties and variations on a theorem of Lie-Griffiths. Invent. Math. 135, 297–328 (1999). Doi:10.1007/s002220050287CrossRefzbMATHMathSciNetGoogle Scholar
  12. 80.
    Kleiman, S.: What is Abel’s theorem anyway? In: Laudal, O., Piene, R. (eds.) The Legacy of Niels Henrik Abel, pp. 395–440. Springer, New York (2004)CrossRefGoogle Scholar
  13. 102.
    Pareschi, G., Popa, M.: Castelnuovo theory and the geometric Schottky problem. J. Reine Angew. Math. 615, 25–44 (2008). Doi:10.1515/CRELLE.2008.008zbMATHMathSciNetGoogle Scholar
  14. 122.
    Rosenlicht, M.: Equivalence relations on algebraic curves. Ann. Math. 56, 169–191 (1952). Doi:10.2307/1969773CrossRefzbMATHMathSciNetGoogle Scholar
  15. 127.
    Tedeschi, G.: The genus of reduced space curves. Rend. Sem. Mat. Univ. Politec. Torino 56 81–88 (1998)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Jorge Vitório Pereira
    • 1
  • Luc Pirio
    • 2
  1. 1.Instituto de Matemática Pura e AplicadaRio de JaneiroBrazil
  2. 2.Institut de Recherches Mathématiques de Rennes IRMAR, UMR 6625 du CNRSUniversité Rennes 1RennesFrance

Personalised recommendations