Advertisement

Local and Global Webs

  • Jorge Vitório Pereira
  • Luc Pirio
Chapter
  • 769 Downloads
Part of the IMPA Monographs book series (IMPA, volume 2)

Abstract

In its classical form, web geometry studies local configurations of finitely many smooth foliations in general position. In Sect. 1.1 the basic definitions of our subject are laid down and the algebraic webs are introduced. These are among the most important examples of the whole theory.

Keywords

Global Web Algebraic Web Smooth Web Conormal Variety Asymptotic Web 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Bibliography

  1. 3.
    Akivis, A., Shelekhov, A.: Geometry and algebra of multidimensional three-webs. In: Mathematics and Its Applications, vol. 82. Kluwer, Dordrecht (1992)Google Scholar
  2. 7.
    Arbarello, E., Cornalba, M., Griffiths, P.A., Harris, J.: Geometry of Algebraic Curves, vol. I. Grundlehren der Mathematischen Wissenschaften, vol. 267. Springer, New York (1985)Google Scholar
  3. 8.
    Arnol’d, V.I.: Geometrical methods in the theory of ordinary differential equations. In: Grundlehren der Mathematischen Wissenschaften, vol. 250. Springer, New York (1988)Google Scholar
  4. 26.
    Cavalier, V., Lehmann, D.: Global stucture of webs in codimension one. Preprint arXiv:0803.2434v1 (2008)Google Scholar
  5. 34.
    Chern, S.-S., Griffiths, P.A.: Abel’s theorem and webs. Jahresberichte der Deutsch. Math.-Ver. 80, 13–110 (1978). http://eudml.org/doc/146681
  6. 39.
    Dalbec, J.: Multisymmetric functions. Beiträge Algebra Geom. 40, 27–51 (1999). http://www.emis.de/journals/BAG/vol.40/no.1/3.html
  7. 42.
    De Medeiros, A.: Singular foliations and differential p-forms. Ann. Fac. Sci. Toulouse Math. 9, 451–466 (2000). http://eudml.org/doc/73521
  8. 48.
    Eisenbud, D., Green, M., Harris, J.: Cayley-Bacharach theorems and conjectures. Bull. Am. Math. Soc. 33, 295–324 (1996). Doi:10.1090/S0273-0979-96-00666-0CrossRefzbMATHMathSciNetGoogle Scholar
  9. 52.
    Fubini, G., \(\check{\mathrm{C}}\) ech, E.: Introduction à la Géométrie Projective Différentielle des Surfaces. Gauthier-Villars, Paris (1931).Google Scholar
  10. 53.
    Fuchs, D., Tabachnikov, S.: Mathematical Omnibus. Thirty Lectures on Classic Mathematics. American Mathematical Society, Providence (2007)zbMATHGoogle Scholar
  11. 55.
    Gelfand, I., Kapranov, M., Zelevinsky, A.: Discriminants, resultants, and multidimensional determinants. Mathematics: Theory & Applications. Birkhäuser, Boston (1994)Google Scholar
  12. 57.
    Ghys, E.: Osculating curves. Slides of a talk (2007). http://www.umpa.ens-lyon.fr/~ghys/Publis.html
  13. 59.
    Goldberg, V.V.: Theory of multicodimensional (n + 1)-webs. Mathematics and Its Applications, vol. 44. Kluwer, Dordrecht (1988)Google Scholar
  14. 63.
    Griffiths, P.A., Harris, J.: Principles of algebraic geometry. Pure and Applied Mathematics. Wiley-Interscience, New York (1978)zbMATHGoogle Scholar
  15. 66.
    Grifone, J., Salem, E. (eds.): Web Theory and Related Topics. World scientific, Singapore (2001)zbMATHGoogle Scholar
  16. 81.
    Lane, E.: A Treatise On Projective Differential Geometry. University of Chicago Press, Chicago (1942)Google Scholar
  17. 95.
    Nakai, I.: Web geometry and the equivalence problem of the first order partial differential equations. In: Grifone, J., Salem E. (eds.) Web Theory And Related Topics, pp. 150–204. World Scientific, Singapore (2001)CrossRefGoogle Scholar
  18. 97.
    Nickalls, R., Dye, R.: The geometry of the discriminant of a polynomial. Math. Gaz. 80, 279–285 (1996). Doi:10.1.1.190.9465Google Scholar
  19. 116.
    Pirola, G.P., Schlesinger, E.: Monodromy of projective curves. J. Algebraic Geom. 14, 623–642 (2005). Doi:10.1090/S1056-3911-05-00408-XCrossRefzbMATHMathSciNetGoogle Scholar
  20. 121.
    Robert, G.: Poincaré maps and Bol’s Theorem. Available electronically at http://kyokan.ms.u-tokyo.ac.jp/~topology/GHC/data/Robert.pdf (2005).
  21. 124.
    Segre, C.: Le linee principali di una superficie di S5 e una proprietà caratteristica della superficie di Veronese. Atti R. Acc. Lincei XXX, 200–203/227–231 (1921)Google Scholar
  22. 126.
    Tabachnikov, S., Timorin, V.: Variations on the Tait-Kneser theorem. Preprint arXiv:math/0602317 (2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Jorge Vitório Pereira
    • 1
  • Luc Pirio
    • 2
  1. 1.Instituto de Matemática Pura e AplicadaRio de JaneiroBrazil
  2. 2.Institut de Recherches Mathématiques de Rennes IRMAR, UMR 6625 du CNRSUniversité Rennes 1RennesFrance

Personalised recommendations