Abstract
Cardiovascular disease is the major cause of morbidity and mortality globally. As such better approaches for early detection and mechanism-targeted therapies are key priorities in cardiovascular research. Growing evidence indicates that vascular inflammation and oxidative stress may play an important role in the genesis and progression of cardiovascular disease. Accordingly identification of markers reflecting these processes may be useful early predictors of vascular damage and could provide insights into mechanisms, risk and targeted treatment. The present chapter provides a brief overview of vascular damage in cardiovascular disease and discusses recently identified novel biomarkers of vascular inflammation and oxidative stress. The potential clinical relevance is also highlighted.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Shimokawa H (2014) 2014 Williams Harvey Lecture: importance of coronary vasomotion abnormalities-from bench to bedside. Eur Heart J 35:3180–3193. doi:10.1093/eurheartj/ehu427
Savoia C, Burger D, Nishigaki N et al (2011) Angiotensin II and the vascular phenotype in hypertension. Expert Rev Mol Med 13:e11
Chaudhari N, Talwar P, Parimisetty A et al (2014) A molecular web: endoplasmic reticulum stress, inflammation, and oxidative stress. Front Cell Neurosci 8:213
Harrison DG, Widder J, Grumbach I et al (2006) Endothelial mechanotransduction, nitric oxide and vascular inflammation. J Intern Med 259(4):351–363
De Ciuceis C, Amiri F, Brassard P et al (2005) Reduced vascular remodeling, endothelial dysfunction, and oxidative stress in resistance arteries of angiotensin II-infused macrophage colony-stimulating factor-deficient mice: evidence for a role in inflammation in angiotensin-induced vascular injury. Arterioscler Thromb Vasc Biol 25:2106–2113
Tano JY, Schleifenbaum J, Gollasch M (2014) Perivascular adipose tissue, potassium channels, and vascular dysfunction. Arterioscler Thromb Vasc Biol 34(9):1827–1830
Sedeek M, Montezano AC, Hebert RL et al (2012) Oxidative stress, Nox isoforms and complications of diabetes–potential targets for novel therapies. J Cardiovasc Transl Res 5(4):509–518
Usui F, Shirasuna K, Kimura H et al (2015) Inflammasome activation by mitochondrial oxidative stress in macrophages leads to the development of angiotensin II-induced aortic aneurysm. Arterioscler Thromb Vasc Biol 35:127–136. doi:10.1161/ATVBAHA.114.303763
Wang Y, Wang GZ, Rabinovitch PS, Tabas I (2014) Macrophage mitochondrial oxidative stress promotes atherosclerosis and nuclear factor-κB-mediated inflammation in macrophages. Circ Res 114(3):421–433
Paneni F, Costantino S, Cosentino F (2014) Molecular mechanisms of vascular dysfunction and cardiovascular biomarkers in type 2 diabetes. Cardiovasc Diagn Ther 4(4):324–332
Signorelli SS, Fiore V, Malaponte G (2014) Inflammation and peripheral arterial disease: the value of circulating biomarkers. Int J Mol Med 33(4):777–783
Koenig W (2013) High-sensitivity C-reactive protein and atherosclerotic disease: from improved risk prediction to risk-guided therapy. Int J Cardiol 168(6):5126–5134
Galano JM, Mas E, Barden A et al (2013) Isoprostanes and neuroprostanes: total synthesis, biological activity and biomarkers of oxidative stress in humans. Prostaglandins Other Lipid Mediat 107:95–102
Biomarkers Definitions Working Group (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69(3):89–95
Wang TJ (2011) Assessing the role of circulating, genetic, and imaging biomarkers in cardiovascular risk prediction. Circulation 123:551–565
Weber M, Hamm C (2006) Role of B-type natriuretic peptide (BNP) and NT-proBNP in clinical routine. Heart 92:843–849
Ho E, Karimi Galougahi K, Liu CC et al (2013) Biological markers of oxidative stress: applications to cardiovascular research and practice. Redox Biol 1(1):483–491
Rodrigo R, Libuy M, Feliú F, Hasson D (2013) Oxidative stress-related biomarkers in essential hypertension and ischemia-reperfusion myocardial damage. Dis Markers 35(6):773–790
Sherwood MW, Kristin Newby L (2014) High-sensitivity troponin assays: evidence, indications, and reasonable use. J Am Heart Assoc 3(1):e000403
Viel EC, Lemarié CA, Benkirane K et al (2010) Immune regulation and vascular inflammation in genetic hypertension. Am J Physiol Heart Circ Physiol 298:H938–H944
Sadat U, Jaffer FA, van Zandvoort MA et al (2014) Inflammation and neovascularization intertwined in atherosclerosis: imaging of structural and molecular imaging targets. Circulation 130(9):786–794
von Hundelshausen P, Schmitt MM (2014) Platelets and their chemokines in atherosclerosis-clinical applications. Front Physiol 5:294
Tuttolomondo A, Di Raimondo D, Pecoraro R et al (2012) Atherosclerosis as an inflammatory disease. Curr Pharm Des 18(28):4266–4288
Pitocco D, Tesauro M, Alessandro R et al (2013) Oxidative stress in diabetes: implications for vascular and other complications. Int J Mol Sci 14(11):21525–21550
Schiffrin EL (2010) T Lymphocytes: a role in hypertension? Curr Opin Nephrol Hypertens 19:181–186
Guzik TJ, Hoch NE, Brown KA (2007) Role of T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J Exp Med 204:2449–2460
Marvar PJ, Thabet SR, Guzik TJ et al (2010) Central and peripheral mechanisms of T-lymphocyte activation and vascular inflammation produced by angiotensin II-induced hypertension. Circ Res 107(2):263–270
Barhoumi T, Kasal DAB, Li MW et al (2011) T regulatory lymphocytes prevent angiotensin II-induced hypertension and vascular injury. Hypertension 57:469–476
Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82(1):47–95
Brandes RP, Weissmann N, Schröder K (2014) Nox family NADPH oxidases: molecular mechanisms of activation. Free Radic Biol Med 76C:208–226
Montezano AC, Touyz RM (2014) Reactive oxygen species, vascular Noxs, and hypertension: focus on translational and clinical research. Antioxid Redox Signal 20(1):164–182
Lassègue B, San Martín A, Griendling KK (2012) Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system. Circ Res 110(10):1364–1390
Liu J, Ormsby A, Oja-Tebbe N, Pagano PJ (2004) Gene transfer of NAD(P)H oxidase inhibitor to the vascular adventitia attenuates medial smooth muscle hypertrophy. Circ Res 95(6):587–594
Mochin MT, Underwood KF, Cooper B et al (2014) Hyperglycemia and redox status regulate RUNX2 DNA-binding and an angiogenic phenotype in endothelial cells. Microvasc Res 97C:55–64
Ali ZA, de Jesus Perez V, Yuan K et al (2014) Oxido-reductive regulation of vascular remodeling by receptor tyrosine kinase ROS1. J Clin Invest 124:5159–5174. pii:77484
Chen J, Xu L, Huang C (2014) DHEA inhibits vascular remodeling following arterial injury: a possible role in suppression of inflammation and oxidative stress derived from vascular smooth muscle cells. Mol Cell Biochem 388(1–2):75–84
Nguyen Dinh Cat A, Montezano AC, Burger D, Touyz RM (2013) Angiotensin II, NADPH oxidase, and redox signaling in the vasculature. Antioxid Redox Signal 19(10):1110–1120
Al Ghouleh I, Khoo NK, Knaus UG et al (2011) Oxidases and peroxidases in cardiovascular and lung disease: new concepts in reactive oxygen species signaling. Free Radic Biol Med 51(7):1271–1288
Touyz RM (2005) Reactive oxygen species as mediators of calcium signalling by angiotensin II: implications in vascular physiology and pathophysiology. Antioxid Redox Signal 7(9–10):1302–1314
Bruder-Nascimento T, Callera GE, Montezano AC et al (2015) Vascular injury in diabetic db/db mice is ameliorated by atorvastatin: role of Rac1/2-sensitive Nox-dependent pathways. Clin Sci (Lond) 128:411–423. doi:10.1042/cs20140456
Heneberg P (2014) Reactive nitrogen species and hydrogen sulfide as regulators of protein tyrosine phosphatase activity. Antioxid Redox Signal 20(14):2191–2209
Tabet F, Savoia C, Schiffrin EL, Touyz RM (2004) Differential calcium regulation by hydrogen peroxide and superoxide in vascular smooth muscle cells from spontaneously hypertensive rats. J Cardiovasc Pharmacol 44(2):200–208
Pastore A, Piemonte F (2013) Protein glutathionylation in cardiovascular diseases. Int J Mol Sci 14(10):20845–20876
Iqbal A, Paviani V, Moretti AI et al (2014) Oxidation, inactivation and aggregation of protein disulfide isomerase promoted by the bicarbonate-dependent peroxidase activity of human superoxide dismutase. Arch Biochem Biophys 557:72–81
Touyz RM, Briones AM (2011) Reactive oxygen species and vascular biology: implications in human hypertension. Hypertens Res 34(1):5–14
Kleikers PW, Wingler K, Hermans JJ et al (2012) NADPH oxidases as a source of oxidative stress and molecular target in ischemia/reperfusion injury. J Mol Med (Berl) 90(12):1391–1406
Maghzal GJ, Krause KH, Stocker R, Jaquet V (2012) Detection of reactive oxygen species derived from the family of NOX NADPH oxidases. Free Radic Biol Med 53(10):1903–1918
Kaludercic N, Deshwal S, Di Lisa F (2014) Reactive oxygen species and redox compartmentalization. Front Physiol 5:285
McNeill E, Channon KM (2012) The role of tetrahydrobiopterin in inflammation and cardiovascular disease. Thromb Haemost 108(5):832–839
Lassegue B, Clempus RE (2003) Vascular NAD(P)H oxidases: specific features, expression, and regulation. Am J Physiol Regul Integr Comp Physiol 285:R277–R297
Kietadisorn R, Juni RP, Moens AL (2012) Tackling endothelial dysfunction by modulating NOS uncoupling: new insights into its pathogenesis and therapeutic possibilities. Am J Physiol Endocrinol Metab 302(5):E481–E495
Cai H, Harrison DG (2000) Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res 87:840–844
Zhang YH, Casadei B (2012) Sub-cellular targeting of constitutive NOS in health and disease. J Mol Cell Cardiol 52(2):341–350
Nagababu E, Rifkind JM (2010) Measurement of plasma nitrite by chemiluminescence. Methods Mol Biol 610:41–49
Bouras G, Deftereos S, Tousoulis D et al (2013) Asymmetric Dimethylarginine (ADMA): a promising biomarker for cardiovascular disease? Curr Top Med Chem 13(2):180–200
Juonala M (2007) Brachial artery flow-mediated dilation and asymmetrical dimethylarginine in the cardiovascular risk in young Finns study. Circulation 116(12):1367–1373
Paiva H (2010) Levels of asymmetrical dimethylarginine are predictive of brachial artery flow-mediated dilation 6 years later. The Cardiovascular Risk in Young Finns Study. Atherosclerosis 212(2):512–515
Wolin MS, Gupte SA, Neo BH et al (2010) Oxidant-redox regulation of pulmonary vascular responses to hypoxia and nitric oxide-cGMP signaling. Cardiol Rev 18(2):89–93
O’Donnell VB (1997) Nitric oxide inhibition of lipid peroxidation: kinetics of reaction with lipid peroxyl radicals and comparison with alpha-tocopherol. Biochemistry 36(49):15216–15223
Roberts LJ, Morrow JD (2000) Measurement of F(2)-isoprostanes as an index of oxidative stress in vivo. Free Radic Biol Med 28(4):505–513
Armstrong D, Browne R (1994) The analysis of free radicals, lipid peroxides, antioxidant enzymes and compounds related to oxidative stress as applied to the clinical chemistry laboratory. Adv Exp Med Biol 366:43–58
Heitzer T, Schlinzig T, Krohn K et al (2001) Endothelial dysfunction, oxidative stress, and risk of cardiovascular events in patients with coronary artery disease. Circulation 104(22):2673–2678
Annuk M, Zilmer M, Lind L et al (2001) Oxidative stress and endothelial function in chronic renal failure. J Am Soc Nephrol 12(12):2747–2752
Annuk M, Zilmer M, Fellstrom B (2003) Endothelium-dependent vasodilation and oxidative stress in chronic renal failure: impact on cardiovascular disease. Kidney Int Suppl 84:S50–S53
Guarneri M (2010) Flow mediated dilation, endothelial and inflammatory biomarkers in hypertensives with chronic kidney disease. J Hypertens 28:e118
Recio-Mayoral A, Banerjee D, Streather C, Kaski JC (2011) Endothelial dysfunction, inflammation and atherosclerosis in chronic kidney disease – a cross-sectional study of predialysis, dialysis and kidney-transplantation patients. Atherosclerosis 216:446–451
Yeun JY, Levine RA, Mantadilok V, Kaysen GA (2000) C-Reactive protein predicts all-cause and cardiovascular mortality in hemodialysis patients. Am J Kidney Dis 35(3):469–476
Ferroni P, Guadagni F (2008) Soluble CD40L and its role in essential hypertension: diagnostic and therapeutic implications. Cardiovasc Hematol Disord Drug Targets 8(3):194–202
Goldberg RB (2009) Cytokine and cytokine-like inflammation markers, endothelial dysfunction, and imbalanced coagulation in development of diabetes and its complications. J Clin Endocrinol Metab 94(9):3171–3182
Binder BR, Christ G, Gruber F et al (2002) Plasminogen activator inhibitor 1: physiological and pathophysiological roles. News Physiol Sci 17:56–61
Yang P, Liu YF, Yang L et al (2010) Mechanism and clinical significance of the prothrombotic state in patients with essential hypertension. Clin Cardiol 33(6):E81–E86
Paulinska P, Spiel A, Jilma B (2009) Role of von Willebrand factor in vascular disease. Hamostaseologie 29(1):32–38
Dignat-George F, Boulanger CM (2011) The many faces of endothelial microparticles. Arterioscler Thromb Vasc Biol 31(1):27–33
Beyer C, Pisetsky DS (2010) The role of microparticles in the pathogenesis of rheumatic diseases. Nat Rev Rheumatol 6(1):21–29
Jy W, Horstman LL, Jimenez JJ et al (2004) Measuring circulating cell-derived microparticles. J Thromb Haemost 2(10):1842–1851
Lacroix R, Robert S, Poncelet P, Dignat-George F (2010) Overcoming limitations of microparticle measurement by flow cytometry. Semin Thromb Hemost 36(8):807–818
Burger D, Montezano AC, Nishigaki N et al (2011) Endothelial microparticle formation by angiotensin II is mediated via AT1R/NADPH Oxidase/Rho kinase pathways targeted to lipid rafts. Arterioscler Thromb Vasc Biol 31:1898–1907
Burger D, Schock S, Thompson CS et al (2013) Microparticles: biomarkers and beyond. Clin Sci (Lond) 124(7):423–441
Burger D, Touyz RM (2012) Cellular biomarkers of endothelial health: microparticles, endothelial progenitor cells, and circulating endothelial cells. J Am Soc Hypertens 6(2):85–99
Burger D, Kwart DG, Montezano AC et al (2012) Microparticles induce cell cycle arrest through redox-sensitive processes in endothelial cells: implications in vascular senescence. J Am Heart Assoc 1(3):e001842
Leroyer AS, Anfosso F, Lacroix R et al (2010) Endothelial-derived microparticles: biological conveyors at the crossroad of inflammation, thrombosis and angiogenesis. Thromb Haemost 104(3):456–463
Shantsila E, Kamphuisen PW, Lip GY (2010) Circulating microparticles in cardiovascular disease: implications for atherogenesis and atherothrombosis. J Thromb Haemost 8(11):2358–2368
Boulanger CM, Amabile N, Tedgui A (2006) Circulating microparticles: a potential prognostic marker for atherosclerotic vascular disease. Hypertension 48(2):180–186
Azevedo LC, Pedro MA, Laurindo FR (2007) Circulating microparticles as therapeutic targets in cardiovascular diseases. Recent Pat Cardiovasc Drug Discov 2(1):41–51
Ridker PM, Lüscher TF (2014) Anti-inflammatory therapies for cardiovascular disease. Eur Heart J 35(27):1782–1791
Kaptoge S, Di AE, Pennells L, Wood AM (2012) C-reactive protein, fibrinogen, and cardiovascular disease prediction. N Engl J Med 367:1310–1320
Gillett MJ (2009) International Expert Committee report on the role of the A1C assay in the diagnosis of diabetes. Diabetes Care 32:1327–1334
Ridker PM (2003) Clinical application of C-reactive protein for cardiovascular disease detection and prevention. Circulation 107:363–369
Kaptoge S, Di Angelantonio E, Lowe G et al (2010) C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: an individual participant meta-analysis. Emerging Risk Factors Collaboration. Lancet 375(9709):132–140
Meisinger C, Heier M, von Scheidt W, Kuch B (2010) Admission C-reactive protein and short- as well as long-term mortality in diabetic versus non-diabetic patients with incident myocardial infarction. MONICA/KORA Myocardial Infarction Registry. Clin Res Cardiol 99(12):817–823
Miyazaki T, Chiuve S, Sacks FM et al (2014) Plasma pentraxin 3 levels do not predict coronary events but reflect metabolic disorders in patients with coronary artery disease in the CARE trial. PLoS One 9(4):e94073
Dubin R, Li Y, Ix JH et al (2012) Associations of pentraxin-3 with cardiovascular events, incident heart failure, and mortality among persons with coronary heart disease: data from the Heart and Soul Study. Am Heart J 163(2):274–279
Xanthakis V, Enserro DM, Murabito JM et al (2014) Ideal cardiovascular health: associations with biomarkers and subclinical disease and impact on incidence of cardiovascular disease in the Framingham offspring study. Circulation 130(19):1676–1683
Keller T, Zeller T, Peetz D et al (2009) Sensitive troponin I assay in early diagnosis of acute myocardial infarction. N Engl J Med 361:868–877
Kotzé RC, Ariëns RA, de Lange Z, Pieters M (2014) CVD risk factors are related to plasma fibrin clot properties independent of total and or γ′ fibrinogen concentration. Thromb Res 134:963–969. pii:S0049-3848(14)00454-X
Tecchio C, Micheletti A, Cassatella MA (2014) Neutrophil-derived cytokines: facts beyond expression. Front Immunol 5:508
Kaptoge S, Seshasai SR, Gao P et al (2014) Inflammatory cytokines and risk of coronary heart disease: new prospective study and updated meta-analysis. Eur Heart J 35(9):578–589
Su D, Li Z, Li X et al (2013) Association between serum interleukin-6 concentration and mortality in patients with coronary artery disease. Mediators Inflamm 2013:726178
Murdaca G, Spanò F, Cagnati P, Puppo F (2013) Free radicals and endothelial dysfunction: potential positive effects of TNF-α inhibitors. Redox Rep 18(3):95–99
Tam LS, Kitas GD, González-Gay MA (2014) Can suppression of inflammation by anti-TNF prevent progression of subclinical atherosclerosis in inflammatory arthritis? Rheumatology (Oxford) 53(6):1108–1119
Garlanda C, Dinarello CA, Mantovani A (2013) The interleukin-1 family: back to the future. Immunity 39(6):1003–1018
Dinarello CA, van der Meer JW (2013) Treating inflammation by blocking interleukin-1 in humans. Semin Immunol 25(6):469–484
Garbers C, Scheller J (2013) Interleukin-6 and interleukin-11: same same but different. Biol Chem 394(9):1145–1161
Bustamante A, Sobrino T, Giralt D et al (2014) Prognostic value of blood interleukin-6 in the prediction of functional outcome after stroke: a systematic review and meta-analysis. J Neuroimmunol 274(1–2):215–224
Trott DW, Harrison DG (2014) The immune system in hypertension. Adv Physiol Educ 38(1):20–24
Gomolak JR, Didion SP (2014) Angiotensin II-induced endothelial dysfunction is temporally linked with increases in interleukin-6 and vascular macrophage accumulation. Front Physiol 5:396
Spranger J, Kroke A, Möhlig M et al (2003) Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes 52(3):812–817
Lowe G, Woodward M, Hillis G et al (2014) Circulating inflammatory markers and the risk of vascular complications and mortality in people with type 2 diabetes and cardiovascular disease or risk factors: the ADVANCE study. Diabetes 63(3):1115–1123
Kawai VK, Chung CP, Solus JF et al (2014) The ability of the 2013 ACC/AHA cardiovascular risk score to identify rheumatoid arthritis patients with high coronary artery calcification scores. Arthritis Rheumatol. doi:10.1002/art.38944
Puttevils D, De Vusser P, Geusens P, Dens J (2014) Increased cardiovascular risk in patients with rheumatoid arthritis: an overview. Acta Cardiol 69(2):111–118
Damjanov N, Nurmohamed MT, Szekanecz Z (2014) Biologics, cardiovascular effects and cancer. BMC Med 12:48
Greenberg JD, Kremer JM, Curtis JR, CORRONA Investigators (2011) Tumour necrosis factor antagonist use and associated risk reduction of cardiovascular events among patients with rheumatoid arthritis. Ann Rheum Dis 70(4):576–582
Desai RJ, Rao JK, Hansen RA et al (2014) Tumor necrosis factor-α inhibitor treatment and the risk of incident cardiovascular events in patients with early rheumatoid arthritis: a nested case-control study. J Rheumatol 41(11):2129–2136
Niki E (2014) Biomarkers of lipid peroxidation in clinical material. Biochim Biophys Acta 1840(2):809–817
Del Rio D, Stewart AJ, Pellegrini N (2005) A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovasc Dis 15(4):316–328
Yagi K (1998) Simple assay for the level of total lipid peroxides in serum or plasma. Methods Mol Biol 108:101–106
White M, Ducharme A, Ibrahim R et al (2006) Increased systemic inflammation and oxidative stress in patients with worsening congestive heart failure: improvement after short-term inotropic support. Clin Sci (Lond) 110(4):483–489
White M, Cantin B, Haddad H et al (2013) Cardiac signaling molecules and plasma biomarkers after cardiac transplantation: impact of tacrolimus versus cyclosporine. J Heart Lung Transplant 32(12):1222–1232
Kurlak LO, Green A, Loughna P et al (2014) Oxidative stress markers in hypertensive states of pregnancy: preterm and term disease. Front Physiol 5:310
da Cruz AC, Petronilho F, Heluany CC et al (2014) Oxidative stress and aging: correlation with clinical parameters. Aging Clin Exp Res 26(1):7–12
Lee WC, Wong HY, Chai YY et al (2012) Lipid peroxidation dysregulation in ischemic stroke: plasma 4-HNE as a potential biomarker? Biochem Biophys Res Commun 425(4):842–847
Tanaka S, Miki T, Sha S et al (2011) Serum levels of thiobarbituric acid-reactive substances are associated with risk of coronary heart disease. J Atheroscler Thromb 18(7):584–591
Salonen JT, Nyyssonen K, Salonen R et al (1997) Lipoprotein oxidation and progression of carotid atherosclerosis. Circulation 95:840–845
Zhang ZJ (2013) Systematic review on the association between F2-isoprostanes and cardiovascular disease. Ann Clin Biochem 50(Pt 2):108–114
Lee R, Margaritis M, Channon KM, Antoniades C (2012) Evaluating oxidative stress in human cardiovascular disease: methodological aspects and considerations. Curr Med Chem 19(16):2504–2520
Campos C, Guzmán R, López-Fernández E, Casado Á (2011) Urinary biomarkers of oxidative/nitrosative stress in healthy smokers. Inhal Toxicol 23(3):148–156
Morrow JD, Frei B, Longmire AW et al (1995) Increase in circulating products of lipid peroxidation (F2-isoprostanes) in smokers. Smoking as a cause of oxidative damage. N Engl J Med 332(18):1198–1203
Davies SS, Roberts LJ 2nd (2011) F2-isoprostanes as an indicator and risk factor for coronary heart disease. Free Radic Biol Med 50(5):559–566
Basu S (2010) Bioactive eicosanoids: role of prostaglandin F(2α) and F2-isoprostanes in inflammation and oxidative stress related pathology. Mol Cells 30(5):383–391
Tsimikas S (2006) Oxidative biomarkers in the diagnosis and prognosis of cardiovascular disease. Am J Cardiol 98(11A):9P–17P
Pignatelli P, Pastori D, Carnevale R et al (2014) Serum NOX2 and urinary isoprostanes predict vascular events in patients with atrial fibrillation. Thromb Haemost. doi:10.1160/TH14-07-0571
Spickett CM (2013) The lipid peroxidation product 4-hydroxy-2-nonenal: advances in chemistry and analysis. Redox Biol 1(1):145–152
Asselin C, Shi Y, Clément R et al (2007) Higher circulating 4-hydroxynonenal-protein thioether adducts correlate with more severe diastolic dysfunction in spontaneously hypertensive rats. Redox Rep 12(1):68–72
Mali VR, Ning R, Chen J et al (2014) Impairment of aldehyde dehydrogenase-2 by 4-hydroxy-2-nonenal adduct formation and cardiomyocyte hypertrophy in mice fed a high-fat diet and injected with low-dose streptozotocin. Exp Biol Med 239(5):610–618
Zhang Y, Sano M, Shinmura K et al (2010) 4-hydroxy-2-nonenal protects against cardiac ischemia-reperfusion injury via the Nrf2-dependent pathway. J Mol Cell Cardiol 49(4):576–586
Usberti M, Gerardi GM, Gazzotti RM et al (2002) Oxidative stress and cardiovascular disease in dialyzed patients. Nephron 91(1):25–33
Gerardi G, Usberti M, Martini G et al (2002) Plasma total antioxidant capacity in hemodialyzed patients and its relationships to other biomarkers of oxidative stress and lipid peroxidation. Clin Chem Lab Med 40(2):104–110
Fraga CG, Oteiza PI, Galleano M (2014) In vitro measurements and interpretation of total antioxidant capacity. Biochim Biophys Acta 1840(2):931–934
Pinchuk I, Shoval H, Dotan Y, Lichtenberg D (2012) Evaluation of antioxidants: scope, limitations and relevance of assays. Chem Phys Lipids 165(6):638–647
Lotito SB, Frei B (2006) Consumption of flavonoid-rich foods and increased plasma antioxidant capacity in humans: cause, consequence, or epiphenomenon? Free Radic Biol Med 41(12):1727–1746
Hollman PC, Cassidy A, Comte B et al (2011) The biological relevance of direct antioxidant effects of polyphenols for cardiovascular health in humans is not established. J Nutr 141(5):989S–1009S
Wang Y, Chun OK, Song WO (2013) Plasma and dietary antioxidant status as cardiovascular disease risk factors: a review of human studies. Nutrients 5(8):2969–3004
Bartosz G (2010) Non-enzymatic antioxidant capacity assays: limitations of use in biomedicine. Free Radic Res 44(7):711–720
Gedikli O, Ozturk S, Yilmaz H et al (2009) Low total antioxidative capacity levels are associated with augmentation index but not pulse-wave velocity. Heart Vessels 24(5):366–370
Dean RT, Fu S, Stocker R, Davies MJ (1997) Biochemistry and pathology of radical-mediated protein oxidation. Biochem J 324(Pt 1):1–18
Shacter E (2000) Quantification and significance of protein oxidation in biological samples. Drug Metab Rev 32(3–4):307–326
Cai Z, Yan LJ (2013) Protein oxidative modifications: beneficial roles in disease and health. J Biochem Pharmacol Res 1(1):15–26
Dalle-Donne I, Giustarini D, Colombo R, Rossi R, Milzani A (2003) Protein carbonylation in human diseases. Trends Mol Med 9:169–176
Kojer K, Riemer J (2014) Balancing oxidative protein folding: the influences of reducing pathways on disulfide bond formation. Biochim Biophys Acta 1844(8):1383–1390
Rhee SG, Jeong W, Chang TS, Woo HA (2007) Sulfiredoxin, the cysteine sulfinic acid reductase specific to 2-Cys peroxiredoxin: its discovery, mechanism of action, and biological significance. Kidney Int Suppl 106:S3–S8
Arai H (2014) Oxidative modification of lipoproteins. Subcell Biochem 77:103–114
Collins AR (2005) Assays for oxidative stress and antioxidant status: applications to research into the biological effectiveness of polyphenols. Am J Clin Nutr 81(1 Suppl):261S–267S
Haque A, Andersen JN, Salmeen A et al (2011) Conformation-sensing antibodies stabilize the oxidized form of PTP1B and inhibit its phosphatase activity. Cell 147(1):185–198
Nelson KJ, Klomsiri C, Codreanu SG et al (2010) Use of dimedone-based chemical probes for sulfenic acid detection methods to visualize and identify labeled proteins. Methods Enzymol 473:95–115
Paulsen CE, Truong TH, Garcia FJ et al (2012) Peroxide-dependent sulfenylation of the EGFR catalytic site enhances kinase activity. Nat Chem Biol 8(1):57–64
Ckless K (2014) Redox proteomics: from bench to bedside. Adv Exp Med Biol 806:301–317
Groitl B, Jakob U (2014) Thiol-based redox switches. Biochim Biophys Acta 1844(8):1335–1343
Becatti M, Marcucci R, Bruschi G et al (2014) Oxidative modification of fibrinogen is associated with altered function and structure in the subacute phase of myocardial infarction. Arterioscler Thromb Vasc Biol 34(7):1355–1361
Goff DC Jr, Lloyd-Jones DM, Bennett G, American College of Cardiology/American Heart Association Task Force on Practice Guidelines et al (2014) 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 129(25 Suppl 2):S49–S73
Davies KJ, Thapar A, Kasivisvanathan V et al (2013) Review of trans-atlantic cardiovascular best medical therapy guidelines – recommendations for asymptomatic carotid atherosclerosis. Curr Vasc Pharmacol 11(4):514–523
Davidson MH, Corson MA, Alberts MJ et al (2008) Consensus panel recommendation for incorporating lipoprotein-associated phospholipase A2 testing into cardiovascular disease risk assessment guidelines. Am J Cardiol 101(12A):51F–57F
Paynter NP, Everett BM, Cook NR (2014) Cardiovascular disease risk prediction in women: is there a role for novel biomarkers? Clin Chem 60(1):88–97
Abbasi A, Corpeleijn E, Meijer E et al (2012) Sex differences in the association between plasma copeptin and incident type 2 diabetes: the Prevention of Renal and Vascular Endstage Disease (PREVEND) study. Diabetologia 55(7):1963–1970
Acknowledgements
Work from the author’s laboratory was supported by grants 44018, from the Canadian Institutes of Health Research (CIHR), and grants from the British Heart Foundation (BHF). RMT is supported through a BHF Chair, PW through a BHF Fellowship, MD through a Marie Curie ITN (RADOX) and ACM through a Leadership Fellowship from the University of Glasgow.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Welsh, P. et al. (2015). Biomarkers of Vascular Inflammation and Cardiovascular Disease. In: Berbari, A., Mancia, G. (eds) Arterial Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-14556-3_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-14556-3_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-14555-6
Online ISBN: 978-3-319-14556-3
eBook Packages: MedicineMedicine (R0)