Skip to main content

Vascular Changes in the Microcirculation: Arterial Remodeling and Capillary Rarefaction

  • Chapter
  • First Online:
Arterial Disorders

Abstract

Hypertension impacts the vasculature through the mechanical effects of blood pressure and shear stress, as well as those of hormonal systems such as the renin-angiotensin-aldosterone system, endothelin, catecholamines, substances produced in perivascular fat, and inflammatory and immune mediators such as lymphocytes and macrophages and their products. The vascular phenotype of hypertension varies according to the age of subjects. In younger individuals with elevated blood pressure, vascular remodeling occurs in small arteries and arterioles and is eutrophic with reduced lumen diameter and unchanged media cross-sectional area, reduced or enhanced stiffness, and increased extracellular matrix deposition and endothelial dysfunction. In severe or long-standing hypertension and in secondary forms and refractory hypertension, hypertrophic vascular remodeling of small arteries and arterioles is more typically found. In subjects older than 50 years of age, vascular changes are increasingly found in aorta, which becomes stiffer as arteriosclerosis develops, resulting in increased pulse pressure. Enhanced pulsatility may injure small arteries and arterioles, leading to remodeling of these and endothelial dysfunction. Arteriolar and capillary rarefaction promotes tissue underperfusion that contributes to myocardial ischemia and cardiovascular events, heart failure, stroke, nephrosclerosis and chronic kidney disease, and peripheral vascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schiffrin EL (2004) Remodeling of resistance arteries in essential hypertension and effects of antihypertensive treatment. Am J Hypertens 17:1192–1200

    Article  CAS  PubMed  Google Scholar 

  2. Schiffrin EL, Touyz RM (2004) From bedside to bench to bedside: role of renin angiotensin aldosterone system in remodeling of resistance arteries in hypertension. Am J Physiol Heart Circ Physiol 287:H435–H446

    Article  CAS  PubMed  Google Scholar 

  3. Endemann DH, Schiffrin EL (2004) Endothelial dysfunction. J Am Soc Nephrol 15:1983–1992

    Article  CAS  PubMed  Google Scholar 

  4. Lerman A, Zeiher AM (2005) Endothelial function: cardiac events. Circulation 111:363–368

    Article  PubMed  Google Scholar 

  5. De Ciuceis C, Amiri F, Brassard P et al (2005) Reduced vascular remodeling, endothelial dysfunction, and oxidative stress in resistance arteries of angiotensin II-infused macrophage colony-stimulating factor-deficient mice: evidence for a role in inflammation in angiotensin-induced vascular injury. Arterioscler Thromb Vasc Biol 25:2106–2113

    Article  PubMed  Google Scholar 

  6. Savoia C, Schiffrin EL (2007) Reduction of C-reactive protein and the use of the anti-hypertensives. Vasc Health Risk Manag 3(6):975–983

    PubMed Central  CAS  PubMed  Google Scholar 

  7. Savoia C, Schiffrin EL (2006) Inflammation in hypertension. Curr Opin Nephrol Hypertens 2:152–158

    Google Scholar 

  8. Kranzhofer R, Schmidt J, Pfeiffer CA et al (1999) Angiotensin induces inflammatory activation of human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 19:1623–1629

    Article  CAS  PubMed  Google Scholar 

  9. Fukui T, Ishizaka N, Rajagopalan S et al (1997) p22phox mRNA expression and NAD(P)H oxidase activity are increased in aortas from hypertensive rats. Circ Res 80:45–51

    Article  CAS  PubMed  Google Scholar 

  10. Griendling KK, Sorescu D, Lassegue B, Ushio-Fukai M (2000) Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology. Arterioscler Thromb Vasc Biol 20:2175–2183

    Article  CAS  PubMed  Google Scholar 

  11. Touyz RM, Chen X, Tabet F et al (2002) Expression of a functionally active gp91phox-containing neutrophil-type NAD(P)H oxidase in smooth muscle cells from human resistance arteries: regulation by angiotensin II. Circ Res 90:1205–1213

    Article  CAS  PubMed  Google Scholar 

  12. Harada E, Yoshimura M, Yasue H et al (2001) Aldosterone induces angiotensin-converting enzyme gene expression in cultured neonatal rat cardiocytes. Circulation 104:137–139

    Article  CAS  PubMed  Google Scholar 

  13. Schiffrin EL, Gutkowska J, Genest J (1984) Effect of angiotensin II on deoxycorticosterone infusion on vascular angiotensin II receptors in rats. Am J Physiol Heart Circ Physiol 246:H608–H614

    CAS  Google Scholar 

  14. Pu Q, Fritsch Neves M, Virdis A, Touyz RM, Schiffrin EL (2003) Endothelin antagonism on aldosterone-induced oxidative stress and vascular remodeling. Hypertension 42:49–55

    Article  CAS  PubMed  Google Scholar 

  15. Idris-Khodja N, Mian MOR, Paradis P, Schiffrin EL (2014) Dual roles of adaptive immunity in hypertension. Eur Heart J 35:1238–1244

    Article  CAS  PubMed  Google Scholar 

  16. Park JB, Schiffrin EL (2001) Small artery remodeling is the most prevalent (earliest?) form of target organ damage in mild essential hypertension. J Hypertens 19:921–930

    Article  CAS  PubMed  Google Scholar 

  17. Delva P, Lechi A, Pastori C et al (2002) Collagen I and III mRNA gene expression and cell growth potential of skin fibroblasts in patients with essential hypertension. J Hypertens 20:1393–1399

    Article  CAS  PubMed  Google Scholar 

  18. Schiffrin EL (1992) Reactivity of small blood vessels in hypertension: relation with structural changes. Hypertension 19(Suppl 2):II-1–II-9

    CAS  Google Scholar 

  19. Schiffrin EL, Deng LY (1999) Structure and function of resistance arteries of hypertensive patients treated with a β-blocker or a calcium channel antagonist. J Hypertens 14:1247–1255

    Article  Google Scholar 

  20. Intengan HD, Thibault G, Li JS, Schiffrin EL (1999) Resistance artery mechanics, structure and extracellular components in spontaneously hypertensive rats effects of angiotensin receptor antagonism and converting enzyme inhibition. Circulation 100:2267–2275

    Article  CAS  PubMed  Google Scholar 

  21. Intengan HD, Deng LY, Li JS, Schiffrin EL (1999) Mechanics and composition of human subcutaneous resistance arteries in essential hypertension. Hypertension 33:569–574

    Article  CAS  PubMed  Google Scholar 

  22. Marchesi C, Dentali F, Nicolini F et al (2012) Plasma levels of matrix metalloproteinases and their inhibitors in hypertension: a systematic review and meta-analysis. J Hypertens 30:3–16

    Article  CAS  PubMed  Google Scholar 

  23. Intengan HD, Schiffrin EL (2000) Structure and mechanical properties of resistance arteries in hypertension role of adhesion molecules and extracellular matrix determinants. Hypertension 36:312–318

    Article  CAS  PubMed  Google Scholar 

  24. Laviades C, Varo N, Fernandez J et al (1998) Abnormalities of the extracellular degradation of collagen type I in essential hypertension. Circulation 98:535–540

    Article  CAS  PubMed  Google Scholar 

  25. Touyz RM, Schiffrin EL (2000) Signal transduction mechanisms mediating the physiological and pathophysiological actions of angiotensin II in vascular smooth muscle cells. Pharmacol Rev 52:639–672

    CAS  PubMed  Google Scholar 

  26. Schiffrin EL, Touyz RM (2003) Multiple actions of angiotensin II in hypertension: benefits of AT1 receptor blockade. J Am Coll Cardiol 42(5):911–913

    Article  PubMed  Google Scholar 

  27. Nurnberger J, Keflioglu-Scheiber A, Opazo Saez AM et al (2002) Augmentation index is associated with cardiovascular risk. J Hypertens 20:2407–2414

    Article  PubMed  Google Scholar 

  28. Touyz RM, Deng LY, He G et al (1999) Angiotensin II stimulates DNA and protein synthesis in vascular smooth muscle cells from human arteries: role of extracellular signal-regulated kinases. J Hypertens 17:907–916

    Article  CAS  PubMed  Google Scholar 

  29. Diep QN, Li JS, Schiffrin EL (1999) In vivo study of AT1 and AT2 angiotensin receptors in apoptosis in rat blood vessels. Hypertension 34:617–624

    Article  CAS  PubMed  Google Scholar 

  30. Marchesi C, Ebrahimian T, Angulo O et al (2009) Endothelial NO synthase uncoupling and perivascular adipose oxidative stress and inflammation contribute to vascular dysfunction in a rodent model of metabolic syndrome. Hypertension 54:1384–1392

    Article  CAS  PubMed  Google Scholar 

  31. Greenstein AS, Khavandi K, Withers SB et al (2009) Local inflammation and hypoxia abolish the protective anticontractile properties of perivascular fat in obese patients. Circulation 119:1661–1670

    Article  CAS  PubMed  Google Scholar 

  32. Savoia C, Schiffrin EL (2007) Vascular inflammation in hypertension and diabetes: molecular mechanisms and therapeutic intervention. Clin Sci 112:375–384

    Article  CAS  PubMed  Google Scholar 

  33. Izzard AS, Bund SJ, Heagerty AM (1996) Myogenic tone in mesenteric arteries from spontaneously hypertensive rats. Am J Physiol (Heart Circ Physiol) 270:H1–H6

    CAS  Google Scholar 

  34. Touyz RM, Yao G, Schiffrin EL (2003) c-Src induces phosphorylation and translocation of p47phox role in superoxide generation by Ang II in human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 23:981–987

    Article  CAS  PubMed  Google Scholar 

  35. Intengan HD, Schiffrin EL (2001) Vascular remodeling in hypertension – roles of apoptosis, inflammation, and fibrosis. Hypertension 38:581–587

    Article  CAS  PubMed  Google Scholar 

  36. Libby P, Tabas I, Fredman G, Fisher EA (2014) Inflammation and its resolution as determinants of acute coronary syndromes. Circ Res 114:1867–1879

    Article  CAS  PubMed  Google Scholar 

  37. Urbich C, Dimmeler S (2004) Endothelial progenitor cells: characterization and role in vascular biology. Circ Res 95(4):343–353

    Article  CAS  PubMed  Google Scholar 

  38. Hill JM, Zalos G, Halcox JP et al (2003) Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 348(7):593–600

    Article  PubMed  Google Scholar 

  39. Burger D, Schock S, Thompson CS et al (2013) Microparticles: biomarkers and beyond. Clin Sci 124:423–441

    Article  CAS  PubMed  Google Scholar 

  40. Ross R (1999) Atherosclerosis – an inflammatory disease. N Engl J Med 340:115–126

    Article  CAS  PubMed  Google Scholar 

  41. Ridker PM (2014) Inflammation, C-reactive protein, and cardiovascular disease: moving past the marker versus mediator debate. Circ Res 114:594–595

    Article  CAS  PubMed  Google Scholar 

  42. Luna JM, Moon YP, Liu KM et al (2014) High-sensitivity C-reactive protein and interleukin-6–dominant inflammation and ischemic stroke risk: the Northern Manhattan Study. Stroke 45:979–987

    Article  CAS  PubMed  Google Scholar 

  43. Wung BS, Cheng JJ, Chao YJ et al (1996) Cyclical strain increases monocyte chemotactic protein-1 secretion in human endothelial cells. Am J Physiol 270:H1462–H1468

    CAS  PubMed  Google Scholar 

  44. Schiffrin EL (2010) T lymphocytes: a role in hypertension? Curr Opin Nephrol Hypertens 19:181–186

    Article  CAS  PubMed  Google Scholar 

  45. Sesso HD, Buring JE, Rifai N et al (2003) C-reactive protein and the risk of developing hypertension. J Am Med Assoc 290:2945–2951

    Article  CAS  Google Scholar 

  46. Preston RA, Ledford M, Materson BJ et al (2002) Effects of severe, uncontrolled hypertension on endothelial activation: soluble vascular cell adhesion molecule-1, soluble intercellular adhesion molecule-1 and von Willebrand factor. J Hypertens 20:871–877

    Article  CAS  PubMed  Google Scholar 

  47. Blake GJ, Rifai N, Buring JE, Ridker PM (2003) Blood pressure, C-reactive protein, and risk of future cardiovascular events. Circulation 108:2993–2999

    Article  CAS  PubMed  Google Scholar 

  48. Thorand B, Lowel H, Schneider A et al (2003) C-reactive protein as a predictor for incident diabetes mellitus among middle-aged men: results from the MONICA Augsburg cohort study, 1984–1998. Arch Intern Med 163:93–99

    Article  CAS  PubMed  Google Scholar 

  49. Barzilay JI, Peterson D, Cushman M et al (2004) The relationship of cardiovascular risk factors to microalbuminuria in older adults with or without diabetes mellitus or hypertension: the cardiovascular health study. Am J Kidney Dis 44:25–34

    Article  PubMed  Google Scholar 

  50. Chae CU, Lee RT, Rifai N, Ridker PM (2001) Blood pressure and inflammation in apparently healthy men. Hypertension 38:399–403

    Article  CAS  PubMed  Google Scholar 

  51. Engstrom G, Janzon L, Berglund G et al (2002) Blood pressure increase and incidence of hypertension in relation to inflammation-sensitive plasma protein. Arterioscler Thromb Vasc Biol 22:2054–2058

    Article  PubMed  Google Scholar 

  52. Christ A, Temmerman L, Legein B et al (2013) Dendritic cells in cardiovascular diseases: epiphenomenon, contributor, or therapeutic opportunity. Circulation 128:2603–2613

    Article  PubMed  Google Scholar 

  53. Guzik TJ, Hoch NE, Brown KA et al (2007) Role of T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J Exp Med 204:2449–2460

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Marvar PJ, Thabet SR, Guzik TJ et al (2010) Central and peripheral mechanisms of T-lymphocyte activation and vascular inflammation produced by angiotensin II-induced hypertension. Circ Res 107:263–270

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Lob HE, Marvar PJ, Guzik TJ et al (2010) Induction of hypertension and peripheral inflammation by reduction of extracellular superoxide dismutase in the central nervous system. Hypertension 55:277–283

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Viel EC, Lemarié CA, Benkirane K et al (2011) Immune regulation and vascular inflammation in genetic hypertension. Am J Physiol Heart Circ Physiol 298(3):H938–H944

    Article  Google Scholar 

  57. Kvakan HKM, Quadri F, Park J-K et al (2009) Regulatory T cells ameliorate angiotensin II-induced cardiac damage. Circulation 119:2904–2912

    Article  CAS  PubMed  Google Scholar 

  58. Barhoumi T, Kasal DAB, Li MW et al (2011) T regulatory lymphocytes prevent angiotensin II-induced hypertension and vascular injury. Hypertension 57:469–476

    Article  CAS  PubMed  Google Scholar 

  59. Kasal DAB, Barhoumi T, Li MW et al (2012) T regulatory lymphocytes prevent aldosterone-induced vascular injury. Hypertension 59:324–330

    Article  CAS  PubMed  Google Scholar 

  60. Diep QN, Amiri F, Touyz RM et al (2002) PPARa activator effects on Ang II-induced vascular oxidative stress and inflammation. Hypertension 40:866–871

    Article  CAS  PubMed  Google Scholar 

  61. Haffner SM, Greenberg AS, Weston WM et al (2002) Effect of rosiglitazone treatment on nontraditional markers of cardiovascular disease in patients with type 2 diabetes mellitus. Circulation 106:679–684

    Article  CAS  PubMed  Google Scholar 

  62. Tham DM, Martin-McNulty B, Wang YX et al (2002) Angiotensin II is associated with activation of NF-kappaB mediated genes and down regulation of PPARs. Physiol Genomics 11:21–30

    Article  CAS  PubMed  Google Scholar 

  63. Marchesi C, Rehman A, Rautureau Y et al (2013) Protective role of vascular smooth muscle cell PPARγ in angiotensin II-induced vascular disease. Cardiovasc Res 97:562–570

    Article  CAS  PubMed  Google Scholar 

  64. Wang M, Zhang J, Jiang LQ, Spinetti G, Pintus G, Monticone R, Kolodgie FD, Virmani R, Lakatta EG (2007) Proinflammatory profile within the grossly normal aged human aortic wall. Hypertension 50:219–227

    Article  CAS  PubMed  Google Scholar 

  65. Schiffrin EL (2007) The vascular phenotypes in hypertension: relation to the natural history of hypertension. J Am Soc Hypertens 1:56–67

    Article  PubMed  Google Scholar 

  66. Rizzoni D, Porteri E, Boari G et al (2003) Prognostic significance of small artery structure in hypertension. Circulation 108:2230–2235

    Article  PubMed  Google Scholar 

  67. Sharifi AM, Schiffrin EL (1998) Apoptosis in vasculature of spontaneously hypertensive rats effect of an angiotensin converting enzyme inhibitor and a calcium channel antagonists. Am J Hypertens 11:1108–1116

    Article  CAS  PubMed  Google Scholar 

  68. Rizzoni D, Porteri E, Guelfi D et al (2000) Cellular hypertrophy in subcutaneous small arteries of patients with renovascular hypertension. Hypertension 25:931–935

    Article  Google Scholar 

  69. Rizzoni D, Porteri E, Guelfi D et al (2001) Structural alteration in subcutaneous small arteries of normotensive and hypertensive patients with non insulin-dependent diabetes mellitus. Circulation 103:1238–1244

    Article  CAS  PubMed  Google Scholar 

  70. Endemann DH, Pu Q, De Ciuceis C et al (2004) Persistent remodeling of resistance arteries in type 2 diabetic patients on antihypertensive treatment. Hypertension 43:399–404

    Article  CAS  PubMed  Google Scholar 

  71. Rizzoni D, Porteri E, Giustina A et al (2004) Acromegalic patients show the presence of hypertrophic remodeling of subcutaneous small resistance arteries. Hypertension 43:561–565

    Article  CAS  PubMed  Google Scholar 

  72. Prewitt RL, Chen II, Dowell R (1982) Development of microvascular rarefaction in the spontaneously hypertensive rat. Am J Physiol (Heart Circ Physiol) 243:H243–H251

    CAS  Google Scholar 

  73. Greene AS, Tonellato PJ, Lui J et al (1989) Microvascular rarefaction and tissue vascular resistance in hypertension. Am J Physiol (Heart Circ Physiol) 256:H126–H131

    CAS  Google Scholar 

  74. Greene AS, Tonellato PJ, Zhang Z et al (1992) Effect of microvascular rarefaction on tissue oxygen delivery in hypertension. Am J Physiol (Heart Circ Physiol) 262:H1486–H1493

    CAS  Google Scholar 

  75. Levy B, Schiffrin EL, Mourad JJ et al (2008) Impaired tissue perfusion: a pathology common to hypertension, obesity and diabetes. Circulation 118:968–976

    Article  PubMed  Google Scholar 

Download references

Disclosure

This study was supported by CIHR grants 13570, 37917, 82790, and 102606, a Canada Research Chair on Hypertension and Vascular Research from the CRC/CIHR Program of the Government of Canada, and a Canada Fund for Innovation grant, all to ELS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernesto L. Schiffrin C.M., MD, PhD, FRSC, FRCPC, FACP .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Savoia, C., Schiffrin, E.L. (2015). Vascular Changes in the Microcirculation: Arterial Remodeling and Capillary Rarefaction. In: Berbari, A., Mancia, G. (eds) Arterial Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-14556-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14556-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14555-6

  • Online ISBN: 978-3-319-14556-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics