Advertisement

Structural Basis of CK2 Regulation by Autoinhibitory Oligomerization

  • Graziano LolliEmail author
  • Roberto BattistuttaEmail author
Chapter
Part of the Advances in Biochemistry in Health and Disease book series (ABHD, volume 12)

Abstract

The mechanism of regulation of CK2 differs from those common to other eukaryotic protein kinases and is not entirely established yet. Nowadays, several crystal structures of the tetrameric α2β2 holoenzyme are available, supporting a structural model of an autoinhibitory regulation by oligomerization proposed several years before on the basis of biochemical, biophysical and functional data. Monoclinic crystal forms of the holoenzyme reveal the symmetric architecture of the “free” isolated active tetramers. The dimension and the nature of the α/β interfaces configure the symmetric holoenzyme as a strong complex that does not spontaneously dissociate in solution, in accordance with the low dissociation constant (≈4 nM). Hexagonal crystal forms of the CK2 holoenzyme show an asymmetric arrangement of the two catalytic α-subunits around the obligate β2 regulatory subunits. These asymmetric α2β2 tetramers are organised in trimeric rings and filaments that correspond to the inactive forms of the enzyme, whereby the β-subunit plays an essential role in the formation of inactive polymeric assemblies. The derived structural model of (down)regulation by aggregation contributes to the interpretation of many available biochemical and functional data, although it awaits for a more comprehensive validation at the cellular level. These findings pave the way for the design of novel strategies aimed at the modulation of the CK2 activity.

Keywords

Crystal structure Symmetric CK2 holoenzyme Asymmetric CK2 holoenzyme Trimeric CK2 holoenzyme Oligomerization Filaments Activity regulation Autoinhibition Crystal contacts α-Subunit β-Subunit α2β2 tetramer α/β interfaces CK2β acidic loop CK2α p + 1 loop CK2β C-terminal tail Electrostatic interactions Polyamines Autophosphorylation 

Notes

Acknowledgements

This work was supported by Italian Miur (PRIN 2008, R.B.), by FEBS (Distinguished Young Investigator Award, GL) and by the University of Padua (Progetto Giovani GRIC101044, GL).

References

  1. 1.
    Niefind K, Guerra B, Ermakowa I, Issinger OG (2001) Crystal structure of human protein kinase CK2: insights into basic properties of the CK2 holoenzyme. EMBO J 20:5320–5331CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Niefind K, Guerra B, Pinna LA et al (1998) Crystal structure of the catalytic subunit of protein kinase CK2 from Zea mays at 2.1 A resolution. EMBO J 17:2451–2462CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Chantalat L, Leroy D, Filhol O et al (1999) Crystal structure of the human protein kinase CK2 regulatory subunit reveals its zinc finger-mediated dimerization. EMBO J 18:2930–2940CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Boldyreff B, Meggio F, Pinna LA, Issinger OG (1993) Reconstitution of normal and hyperactivated forms of casein kinase-2 by variably mutated beta-subunits. Biochemistry 32:12672–12677CrossRefPubMedGoogle Scholar
  5. 5.
    Niefind K, Issinger OG (2005) Primary and secondary interactions between CK2alpha and CK2beta lead to ring-like structures in the crystals of the CK2 holoenzyme. Mol Cell Biochem 274:3–14CrossRefPubMedGoogle Scholar
  6. 6.
    Sarno S, Vaglio P, Marin O et al (1997) Basic residues in the 74-83 and 191-198 segments of protein kinase CK2 catalytic subunit are implicated in negative but not in positive regulation by the beta-subunit. Eur J Biochem 248:290–295CrossRefPubMedGoogle Scholar
  7. 7.
    Hathaway GM, Traugh JA (1984) Kinetics of activation of casein kinase II by polyamines and reversal of 2,3-bisphosphoglycerate inhibition. J Biol Chem 259:7011–7015PubMedGoogle Scholar
  8. 8.
    Mamrack MD (1989) Stimulation of enzymatic activity in filament preparations of casein kinase II by polylysine, melittin, and spermine. Mol Cell Biochem 85:147–157CrossRefPubMedGoogle Scholar
  9. 9.
    Leroy D, Heriché JK, Filhol O et al (1997) Binding of polyamines to an autonomous domain of the regulatory subunit of protein kinase CK2 induces a conformational change in the holoenzyme. A proposed role for the kinase stimulation. J Biol Chem 272:20820–20827CrossRefPubMedGoogle Scholar
  10. 10.
    Grankowski N, Boldyreff B, Issinger OG (1991) Isolation and characterization of recombinant human casein kinase II subunits alpha and beta from bacteria. Eur J Biochem 198:25–30CrossRefPubMedGoogle Scholar
  11. 11.
    Hathaway GM, Traugh JA (1979) Cyclic nucleotide-independent protein kinases from rabbit reticulocytes. Purification of casein kinases. J Biol Chem 254:762–768PubMedGoogle Scholar
  12. 12.
    Glover CV (1986) A filamentous form of Drosophila casein kinase II. J Biol Chem 261:14349–14354PubMedGoogle Scholar
  13. 13.
    Valero E, De Bonis S, Filhol O et al (1995) Quaternary structure of casein kinase 2. Characterization of multiple oligomeric states and relation with its catalytic activity. J Biol Chem 270:8345–8352CrossRefPubMedGoogle Scholar
  14. 14.
    Lolli G, Pinna LA, Battistutta R (2012) Structural determinants of protein kinase CK2 regulation by autoinhibitory polymerization. ACS Chem Biol 7:1158–1163CrossRefPubMedGoogle Scholar
  15. 15.
    Laudet B, Barette C, Dulery V et al (2007) Structure-based design of small peptide inhibitors of protein kinase CK2 subunit interaction. Biochem J 408:363–373CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Carugo O, Argos P (1997) Protein-protein crystal-packing contacts. Protein Sci 6:2261–2263CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Theis-Febvre N, Martel V, Laudet B et al (2005) Highlighting protein kinase CK2 movement in living cells. Mol Cell Biochem 274:15–22CrossRefPubMedGoogle Scholar
  18. 18.
    Gotz C, Kartarius S, Schetting S, Montenarh M (2005) Immunologically defined subclasses of the protein kinase CK2 beta-subunit in prostate carcinoma cell lines. Mol Cell Biochem 274:181–187CrossRefPubMedGoogle Scholar
  19. 19.
    Kristensen LP, Larsen MR, Hojrup P et al (2004) Phosphorylation of the regulatory beta-subunit of protein kinase CK2 by checkpoint kinase Chk1: identification of the in vitro CK2beta phosphorylation site. FEBS Lett 569:217–223CrossRefPubMedGoogle Scholar
  20. 20.
    French AC, Luscher B, Litchfield DW (2007) Development of a stabilized form of the regulatory CK2beta subunit that inhibits cell proliferation. J Biol Chem 282:29667–29677CrossRefPubMedGoogle Scholar
  21. 21.
    Litchfield DW, Lozeman FJ, Cicirelli MF et al (1991) Phosphorylation of the beta subunit of casein kinase II in human A431 cells. Identification of the autophosphorylation site and a site phosphorylated by p34cdc2. J Biol Chem 266:20380–20389PubMedGoogle Scholar
  22. 22.
    Pagano MA, Sarno S, Poletto G et al (2005) Autophosphorylation at the regulatory beta subunit reflects the supramolecular organization of protein kinase CK2. Mol Cell Biochem 274:23–29CrossRefPubMedGoogle Scholar
  23. 23.
    Boldyreff B, Meggio F, Pinna LA, Issinger OG (1994) Efficient autophosphorylation and phosphorylation of the beta-subunit by casein kinase-2 require the integrity of an acidic cluster 50 residues downstream from the phosphoacceptor site. J Biol Chem 269:4827–4831PubMedGoogle Scholar
  24. 24.
    Meggio F, Pinna LA (1984) Subunit structure and autophosphorylation mechanism of casein kinase-TS (type-2) from rat liver cytosol. Eur J Biochem 145:593–599CrossRefPubMedGoogle Scholar
  25. 25.
    Olsen BB, Boldyreff B, Niefind K, Issinger OG (2006) Purification and characterization of the CK2alpha′-based holoenzyme, an isozyme of CK2alpha: a comparative analysis. Protein Expr Purif 47:651–661CrossRefPubMedGoogle Scholar
  26. 26.
    Zhang C, Vilk G, Canton DA, Litchfield DW (2002) Phosphorylation regulates the stability of the regulatory CK2beta subunit. Oncogene 21:3754–3764CrossRefPubMedGoogle Scholar
  27. 27.
    Agostinis P, Goris J, Pinna LA, Merlevede W (1987) Regulation of casein kinase 2 by phosphorylation/dephosphorylation. Biochem J 248:785–789PubMedCentralPubMedGoogle Scholar
  28. 28.
    Lolli G, Ranchio A, Battistutta R (2014) Active form of the protein kinase CK2 α2β2 holoenzyme is a strong complex with symmetric architecture. ACS Chem Biol 9:366–371CrossRefPubMedGoogle Scholar
  29. 29.
    Schnitzler A, Olsen BB, Issinger OG, Niefind K (2014) The protein kinase CK2(Andante) holoenzyme structure supports proposed models of autoregulation and trans-autophosphorylation. J Mol Biol 426:1871–1882CrossRefPubMedGoogle Scholar
  30. 30.
    Poole A, Poore T, Bandhakavi S et al (2005) A global view of CK2 function and regulation. Mol Cell Biochem 274:163–170CrossRefPubMedGoogle Scholar
  31. 31.
    Raaf J, Guerra B, Neundorf I et al (2013) First structure of protein kinase CK2 catalytic subunit with an effective CK2β-competitive ligand. ACS Chem Biol 8:901–907CrossRefPubMedGoogle Scholar
  32. 32.
    Raaf J, Bischoff N, Klopffleisch K et al (2010) Interaction between CK2α and CK2β, the subunits of protein kinase CK2: thermodynamic contributions of key residues on the CK2α surface. Biochemistry 50:512–522CrossRefPubMedGoogle Scholar
  33. 33.
    Krissinel E, Henrick K (2007) Inference of macromolecular assemblies from crystalline state. J Mol Biol 372:774–797CrossRefPubMedGoogle Scholar
  34. 34.
    Dey S, Pal A, Chakrabarti P, Janin J (2010) The subunit interfaces of weakly associated homodimeric proteins. J Mol Biol 398:146–160CrossRefPubMedGoogle Scholar
  35. 35.
    Nooren IM, Thornton JM (2003) Diversity of protein-protein interactions. EMBO J 22:3486–3492CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Perkins JR, Diboun I, Dessailly BH et al (2010) Transient protein-protein interactions: structural, functional, and network properties. Structure 18:1233–1243CrossRefPubMedGoogle Scholar
  37. 37.
    Nooren IM, Thornton JM (2003) Structural characterisation and functional significance of transient protein-protein interactions. J Mol Biol 325:991–1018CrossRefPubMedGoogle Scholar
  38. 38.
    Filhol O, Nueda A, Martel V et al (2003) Live-cell fluorescence imaging reveals the dynamics of protein kinase CK2 individual subunits. Mol Cell Biol 23:975–987CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    Filhol O, Martiel JL, Cochet C (2004) Protein kinase CK2: a new view of an old molecular complex. EMBO Rep 5:351–355CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    St-Denis NA, Derksen DR, Litchfield DW (2009) Evidence for regulation of mitotic progression through temporal phosphorylation and dephosphorylation of CK2alpha. Mol Cell Biol 29:2068–2081CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    Baggio B, Pinna LA, Moret V, Siliprandi N (1970) A simple procedure for the purification of rat liver phosvitin kinase. Biochim Biophys Acta 212:515–517CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Chemical SciencesUniversity of PaduaPaduaItaly
  2. 2.Venetian Institute for Molecular Medicine (VIMM)PaduaItaly

Personalised recommendations