Advertisement

CK2 Inhibitors and the DYRK Family Protein Kinases

  • Yoshihiko MiyataEmail author
Chapter
Part of the Advances in Biochemistry in Health and Disease book series (ABHD, volume 12)

Abstract

CK2 is a ubiquitous and pleiotropic Ser-/Thr-targeting acidophilic protein kinase. CK2 plays an important role in the aberrant proliferation of malignant cancer cells. Because of constitutive activity of CK2, its inhibitors have been widely used to analyze the physiological function of CK2 in cellular systems. In addition, CK2 inhibitors are regarded as promising cancer chemotherapeutic candidates. Recently, several commonly used CK2 inhibitors have been shown to suppress DYRK (dual-specificity tyrosine-phosphorylation-regulated protein kinase) family protein kinases. Thus, the results obtained with conventional CK2 inhibitors should be carefully interpreted considering their effects on DYRKs. In this chapter, after an introductory section on CK2 and its inhibitors, the structures and activation mechanism of DYRK family protein kinases are portrayed. DYRK1A is one of the pivotal factors encoded in Down’s syndrome critical region on human chromosome 21, and dysregulation of DYRK1A may be a molecular basis of various phenotypes observed in Down’s syndrome patients. Substrates, physiological function, binding partners, regulatory mechanisms, and CK2 inhibitor sensitivities of DYRK1A are described in detail. Finally, the biological and clinical importance of CK2 and DYRK1A as therapeutic targets will be discussed.

Keywords

CK2 DYRK1A Phosphorylation Protein kinase Inhibitor Down’s syndrome TBB Cancer chemotherapeutics NFAT Leukemia 

References

  1. 1.
    Olsen BB, Guerra B, Niefind K, Issinger OG (2010) Structural basis of the constitutive activity of protein kinase CK2. Methods Enzymol 484:515–529PubMedGoogle Scholar
  2. 2.
    Niefind K, Issinger OG (2010) Conformational plasticity of the catalytic subunit of protein kinase CK2 and its consequences for regulation and drug design. Biochim Biophys Acta 1804:484–492PubMedGoogle Scholar
  3. 3.
    Olsten ME, Litchfield DW (2004) Order or chaos? An evaluation of the regulation of protein kinase CK2. Biochem Cell Biol 82:681–693PubMedGoogle Scholar
  4. 4.
    Filhol O, Martiel J-L, Cochet C (2004) Protein kinase CK2: a new view of an old molecular complex. EMBO Rep 5:351–355PubMedCentralPubMedGoogle Scholar
  5. 5.
    Pinna LA (2003) The raison d'être of constitutively active protein kinases: the lesson of CK2. Acc Chem Res 36:378–384PubMedGoogle Scholar
  6. 6.
    Litchfield DW (2003) Protein kinase CK2: structure, regulation and role in cellular decisions of life and death. Biochem J 369:1–15PubMedCentralPubMedGoogle Scholar
  7. 7.
    Meggio F, Pinna LA (2003) One-thousand-and-one substrates of protein kinase CK2? FASEB J 17:349–368PubMedGoogle Scholar
  8. 8.
    Salvi M, Sarno S, Cesaro L, Nakamura H, Pinna LA (2009) Extraordinary pleiotropy of protein kinase CK2 revealed by weblogo phosphoproteome analysis. Biochim Biophys Acta 1793:847–859PubMedGoogle Scholar
  9. 9.
    Pagano MA, Cesaro L, Meggio F, Pinna LA (2006) Protein kinase CK2: a newcomer in the “druggable kinome”. Biochem Soc Trans 34:1303–1306PubMedGoogle Scholar
  10. 10.
    Bolanos-Garcia VM, Fernandez-Recio J, Allende JE, Blundell TL (2006) Identifying interaction motifs in CK2β—a ubiquitous kinase regulatory subunit. Trends Biochem Sci 31:654–661PubMedGoogle Scholar
  11. 11.
    Bibby AC, Litchfield DW (2005) The multiple personalities of the regulatory subunit of protein kinase CK2: CK2 dependent and CK2 independent roles reveal a secret identity for CK2β. Int J Biol Sci 1:67–79PubMedCentralPubMedGoogle Scholar
  12. 12.
    Bosc DG, Slominski E, Sichler C, Litchfield DW (1995) Phosphorylation of casein kinase II by p34cdc2. Identification of phosphorylation sites using phosphorylation site mutants in vitro. J Biol Chem 270:25872–25878PubMedGoogle Scholar
  13. 13.
    Donella-Deana A, Cesaro L, Sarno S, Ruzzene M, Brunati AM, Marin O, Vilk G, Doherty-Kirby A, Lajoie G, Litchfield DW, Pinna LA (2003) Tyrosine phosphorylation of protein kinase CK2 by Src-related tyrosine kinases correlates with increased catalytic activity. Biochem J 372:841–849PubMedCentralPubMedGoogle Scholar
  14. 14.
    Ji H, Wang J, Nika H, Hawke D, Keezer S, Ge Q, Fang B, Fang X, Fang D, Litchfield DW, Aldape K, Lu Z (2009) EGF-induced ERK activation promotes CK2-mediated disassociation of α-catenin from β-catenin and transactivation of β-catenin. Mol Cell 36:547–559PubMedCentralPubMedGoogle Scholar
  15. 15.
    Nguyen le XT, Mitchell BS (2013) Akt activation enhances ribosomal RNA synthesis through casein kinase II and TIF-IA. Proc Natl Acad Sci U S A 110:20681–20686PubMedCentralPubMedGoogle Scholar
  16. 16.
    Ahmad KA, Wang G, Slaton J, Unger G, Ahmed K (2005) Targeting CK2 for cancer therapy. Anticancer Drugs 16:1037–1043PubMedGoogle Scholar
  17. 17.
    Xu X, Landesman-Bollag E, Channavajhala PL, Seldin DC (1999) Murine protein kinase CK2: gene and oncogene. Mol Cell Biochem 191:65–74PubMedGoogle Scholar
  18. 18.
    Marshak DR, Russo GL (1994) Regulation of protein kinase CKII during the cell division cycle. Cell Mol Biol Res 40:513–517PubMedGoogle Scholar
  19. 19.
    Lorenz P, Pepperkok R, Pyerin W (1994) Requirement of casein kinase 2 for entry into and progression through early phases of the cell cycle. Cell Mol Biol Res 40:519–527PubMedGoogle Scholar
  20. 20.
    Homma MK, Homma Y (2008) Cell cycle and activation of CK2. Mol Cell Biochem 316:49–55PubMedGoogle Scholar
  21. 21.
    Allada R, Meissner RA (2005) Casein kinase 2, circadian clocks, and the flight from mutagenic light. Mol Cell Biochem 274:141–149PubMedGoogle Scholar
  22. 22.
    Tsuchiya Y, Akashi M, Matsuda M, Goto K, Miyata Y, Node K, Nishida E (2009) Involvement of the protein kinase CK2 in the regulation of mammalian circadian rhythms. Sci Signal 2:ra26PubMedGoogle Scholar
  23. 23.
    Lin JM, Kilman VL, Keegan K, Paddock B, Emery-Le M, Rosbash M, Allada R (2002) A role for casein kinase 2α in the Drosophila circadian clock. Nature 420:816–820PubMedGoogle Scholar
  24. 24.
    Seldin DC, Landesman-Bollag E, Farago M, Currier N, Lou D, Dominguez I (2005) CK2 as a positive regulator of Wnt signalling and tumourigenesis. Mol Cell Biochem 274:63–67PubMedGoogle Scholar
  25. 25.
    Tuazon PT, Traugh JA (1990) Casein kinase I and II—multipotential serine protein kinases: structure, function and regulation. Adv Second Messenger Phosphoprotein Res 23:123–164Google Scholar
  26. 26.
    Yim H, Lee YH, Lee CH, Lee SK (1999) Emodin, an anthraquinone derivative isolated from the rhizomes of Rheum palmatum, selectively inhibits the activity of casein kinase II as a competitive inhibitor. Planta Med 65:9–13PubMedGoogle Scholar
  27. 27.
    Davies SP, Reddy H, Caivano M, Cohen P (2000) Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 351:95–105PubMedCentralPubMedGoogle Scholar
  28. 28.
    Hessenauer A, Montenarh M, Götz C (2003) Inhibition of CK2 activity provokes different responses in hormone-sensitive and hormone-refractory prostate cancer cells. Int J Oncol 22:1263–1270PubMedGoogle Scholar
  29. 29.
    Zhao M, Ma J, Zhu HY, Zhang XH, Du ZY, Xu YJ, Yu XD (2011) Apigenin inhibits proliferation and induces apoptosis in human multiple myeloma cells through targeting the trinity of CK2, Cdc37 and Hsp90. Mol Cancer 10:104PubMedCentralPubMedGoogle Scholar
  30. 30.
    Zandomeni R, Zandomeni MC, Shugar D, Weinmann R (1986) Casein kinase type II is involved in the inhibition by 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole of specific RNA polymerase II transcription. J Biol Chem 261:3414–3419PubMedGoogle Scholar
  31. 31.
    Szyszka R, Grankowski N, Felczak K, Shugar D (1995) Halogenated benzimidazoles and benzotriazoles as selective inhibitors of protein kinases CK I and CK II from Saccharomyces cerevisiae and other sources. Biochem Biophys Res Commun 208:418–424PubMedGoogle Scholar
  32. 32.
    Becker W, Weber Y, Wetzel K, Eirmbter K, Tejedor FJ, Joost H-G (1998) Sequence characteristics, subcellular localization, and substrate specificity of DYRK-related kinases, a novel family of dual specificity protein kinases. J Biol Chem 273:25893–25902PubMedGoogle Scholar
  33. 33.
    Mercer SE, Friedman E (2006) Mirk/Dyrk1B: a multifunctional dual-specificity kinase involved in growth arrest, differentiation, and cell survival. Cell Biochem Biophys 45:303–315PubMedGoogle Scholar
  34. 34.
    Aranda S, Laguna A, de la Luna S (2011) DYRK family of protein kinases: evolutionary relationships, biochemical properties, and functional roles. FASEB J 25:449–462PubMedGoogle Scholar
  35. 35.
    Becker W (2012) Emerging role of DYRK family protein kinases as regulators of protein stability in cell cycle control. Cell Cycle 11:3389–3394PubMedCentralPubMedGoogle Scholar
  36. 36.
    Yoshida K (2008) Role for DYRK family kinases on regulation of apoptosis. Biochem Pharmacol 76:1389–1394PubMedGoogle Scholar
  37. 37.
    Wiechmann S, Czajkowska H, de Graaf K, Grötzinger J, Joost HG, Becker W (2003) Unusual function of the activation loop in the protein kinase DYRK1A. Biochem Biophys Res Commun 302:403–408PubMedGoogle Scholar
  38. 38.
    Lochhead PA, Sibbet G, Morrice N, Cleghon V (2005) Activation-loop autophosphorylation is mediated by a novel transitional intermediate form of DYRKs. Cell 121:925–936PubMedGoogle Scholar
  39. 39.
    Walte A, Rüben K, Birner-Gruenberger R, Preisinger C, Bamberg-Lemper S, Hilz N, Bracher F, Becker W (2013) Mechanism of dual specificity kinase activity of DYRK1A. FEBS J 280:4495–4511PubMedGoogle Scholar
  40. 40.
    Lochhead PA, Kinstrie R, Sibbet G, Rawjee T, Morrice N, Cleghon V (2006) A chaperone-dependent GSK3β transitional intermediate mediates activation-loop autophosphorylation. Mol Cell 24:627–633PubMedGoogle Scholar
  41. 41.
    Himpel S, Tegge W, Frank R, Leder S, Joost HG, Becker W (2000) Specificity determinants of substrate recognition by the protein kinase DYRK1A. J Biol Chem 275:2431–2438PubMedGoogle Scholar
  42. 42.
    Campbell LE, Proud CG (2002) Differing substrate specificities of members of the DYRK family of arginine-directed protein kinases. FEBS Lett 510:31–36PubMedGoogle Scholar
  43. 43.
    Woods YL, Cohen P, Becker W, Jakes R, Goedert M, Wang X, Proud CG (2001) The kinase DYRK phosphorylates protein-synthesis initiation factor eIF2Bepsilon at Ser539 and the microtubule-associated protein tau at Thr212: potential role for DYRK as a glycogen synthase kinase 3-priming kinase. Biochem J 355:609–615PubMedCentralPubMedGoogle Scholar
  44. 44.
    Ryoo SR, Jeong HK, Radnaabazar C, Yoo JJ, Cho HJ, Lee HW, Kim IS, Cheon YH, Ahn YS, Chung SH, Song WJ (2007) DYRK1A-mediated hyperphosphorylation of Tau. A functional link between Down syndrome and Alzheimer disease. J Biol Chem 282:34850–34857PubMedGoogle Scholar
  45. 45.
    Liu F, Li B, Tung EJ, Grundke-Iqbal I, Iqbal K, Gong CX (2007) Site-specific effects of tau phosphorylation on its microtubule assembly activity and self-aggregation. Eur J Neurosci 26:3429–3436PubMedCentralPubMedGoogle Scholar
  46. 46.
    Kimura R, Kamino K, Yamamoto M, Nuripa A, Kida T, Kazui H, Hashimoto R, Tanaka T, Kudo T, Yamagata H, Tabara Y, Miki T, Akatsu H, Kosaka K, Funakoshi E, Nishitomi K, Sakaguchi G, Kato A, Hattori H, Uema T, Takeda M (2007) The DYRK1A gene, encoded in chromosome 21 Down syndrome critical region, bridges between beta-amyloid production and tau phosphorylation in Alzheimer disease. Hum Mol Genet 16:15–23PubMedGoogle Scholar
  47. 47.
    de Graaf K, Czajkowska H, Rottmann S, Packman LC, Lilischkis R, Lüscher B, Becker W (2006) The protein kinase DYRK1A phosphorylates the splicing factor SF3b1/SAP155 at Thr434, a novel in vivo phosphorylation site. BMC Biochem 7:7PubMedCentralPubMedGoogle Scholar
  48. 48.
    Laguna A, Aranda S, Barallobre MJ, Barhoum R, Fernández E, Fotaki V, Delabar JM, de la Luna S, de la Villa P, Arbonés ML (2008) The protein kinase DYRK1A regulates caspase-9-mediated apoptosis during retina development. Dev Cell 15:841–853PubMedGoogle Scholar
  49. 49.
    Seifert A, Allan LA, Clarke PR (2008) DYRK1A phosphorylates caspase 9 at an inhibitory site and is potently inhibited in human cells by harmine. FEBS J 275:6268–6280PubMedGoogle Scholar
  50. 50.
    Skurat AV, Dietrich AD (2004) Phosphorylation of Ser640 in muscle glycogen synthase by DYRK family protein kinases. J Biol Chem 279:2490–2498PubMedGoogle Scholar
  51. 51.
    Kurabayashi N, Hirota T, Sakai M, Sanada K, Fukada Y (2010) DYRK1A and glycogen synthase kinase 3β, a dual-kinase mechanism directing proteasomal degradation of CRY2 for circadian timekeeping. Mol Cell Biol 30:1757–1768PubMedCentralPubMedGoogle Scholar
  52. 52.
    de Graaf K, Hekerman P, Spelten O, Herrmann A, Packman LC, Büssow K, Müller-Newen G, Becker W (2004) Characterization of cyclin L2, a novel cyclin with an arginine/serine-rich domain: phosphorylation by DYRK1A and colocalization with splicing factors. J Biol Chem 279:4612–4624PubMedGoogle Scholar
  53. 53.
    Jung MS, Park JH, Ryu YS, Choi SH, Yoon SH, Kwen MY, Oh JY, Song WJ, Chung SH (2011) Regulation of RCAN1 protein activity by Dyrk1A protein-mediated phosphorylation. J Biol Chem 286:40401–40412PubMedCentralPubMedGoogle Scholar
  54. 54.
    Matsuo R, Ochiai W, Nakashima K, Taga T (2001) A new expression cloning strategy for isolation of substrate-specific kinases by using phosphorylation site-specific antibody. J Immunol Methods 247:141–151PubMedGoogle Scholar
  55. 55.
    Yang EJ, Ahn YS, Chung KC (2001) Protein kinase Dyrk1 activates cAMP response element-binding protein during neuronal differentiation in hippocampal progenitor cells. J Biol Chem 276:39819–39824PubMedGoogle Scholar
  56. 56.
    Woods YL, Rena G, Morrice N, Barthel A, Becker W, Guo S, Unterman TG, Cohen P (2001) The kinase DYRK1A phosphorylates the transcription factor FKHR at Ser329 in vitro, a novel in vivo phosphorylation site. Biochem J 355:597–607PubMedCentralPubMedGoogle Scholar
  57. 57.
    Mao J, Maye P, Kogerman P, Tejedor FJ, Toftgard R, Xie W, Wu G, Wu D (2002) Regulation of Gli1 transcriptional activity in the nucleus by Dyrk1. J Biol Chem 277:35156–35161PubMedGoogle Scholar
  58. 58.
    Gwack Y, Sharma S, Nardone J, Tanasa B, Iuga A, Srikanth S, Okamura H, Bolton D, Feske S, Hogan PG, Rao A (2006) A genome-wide Drosophila RNAi screen identifies DYRK-family kinases as regulators of NFAT. Nature 441:646–650PubMedGoogle Scholar
  59. 59.
    Arron JR, Winslow MM, Polleri A, Chang CP, Wu H, Gao X, Neilson JR, Chen L, Heit JJ, Kim SK, Yamasaki N, Miyakawa T, Francke U, Graef IA, Crabtree GR (2006) NFAT dysregulation by increased dosage of DSCR1 and DYRK1A on chromosome 21. Nature 441:595–600PubMedGoogle Scholar
  60. 60.
    Galceran J, de Graaf K, Tejedor FJ, Becker W (2003) The Mnb/Dyrk1A protein kinase: genetic and biochemical properties. J Neural Transm Suppl 67:139–148PubMedGoogle Scholar
  61. 61.
    Hämmerle B, Elizalde C, Galceran J, Becker W, Tejedor FJ (2003) The Mnb/Dyrk1A protein kinase: neurobiological functions and Down syndrome implications. J Neural Transm Suppl 67:129–137PubMedGoogle Scholar
  62. 62.
    Guimerá J, Casas C, Estivill X, Pritchard M (1999) Human minibrain homologue (MNBH/DYRK1): characterization, alternative splicing, differential tissue expression, and overexpression in Down syndrome. Genomics 57:407–418PubMedGoogle Scholar
  63. 63.
    Dowjat WK, Adayev T, Kuchna I, Nowicki K, Palminiello S, Hwang YW, Wegiel J (2007) Trisomy-driven overexpression of DYRK1A kinase in the brain of subjects with Down syndrome. Neurosci Lett 413:77–81PubMedCentralPubMedGoogle Scholar
  64. 64.
    Altafaj X, Dierssen M, Baamonde C, Martí E, Visa J, Guimerà J, Oset M, González JR, Flórez J, Fillat C, Estivill X (2001) Neurodevelopmental delay, motor abnormalities and cognitive deficits in transgenic mice overexpressing Dyrk1A (minibrain), a murine model of Down’s syndrome. Hum Mol Genet 10:1915–1923PubMedGoogle Scholar
  65. 65.
    Ahn KJ, Jeong HK, Choi HS, Ryoo SR, Kim YJ, Goo JS, Choi SY, Han JS, Ha I, Song WJ (2006) DYRK1A BAC transgenic mice show altered synaptic plasticity with learning and memory defects. Neurobiol Dis 22:463–472PubMedGoogle Scholar
  66. 66.
    Martínez de Lagrán M, Altafaj X, Gallego X, Martí E, Estivill X, Sahún I, Fillat C, Dierssen M (2004) Motor phenotypic alterations in TgDyrk1a transgenic mice implicate DYRK1A in Down syndrome motor dysfunction. Neurobiol Dis 15:132–142PubMedGoogle Scholar
  67. 67.
    Galdzicki Z, Siarey R, Pearce R, Stoll J, Rapoport SI (2001) On the cause of mental retardation in Down syndrome: extrapolation from full and segmental trisomy 16 mouse models. Brain Res Rev 35:115–145PubMedGoogle Scholar
  68. 68.
    Tejedor F, Zhu XR, Kaltenbach E, Ackermann A, Baumann A, Canal I, Heisenberg M, Fischbach KF, Pongs O (1995) Minibrain: a new protein kinase family involved in postembryonic neurogenesis in Drosophila. Cell 14:287–301Google Scholar
  69. 69.
    Laguna A, Barallobre MJ, Marchena MA, Mateus C, Ramírez E, Martínez-Cue C, Delabar JM, Castelo-Branco M, de la Villa P, Arbonés ML (2013) Triplication of DYRK1A causes retinal structural and functional alterations in Down syndrome. Hum Mol Genet 22:2775–2784PubMedGoogle Scholar
  70. 70.
    Sarno S, de Moliner E, Ruzzene M, Pagano MA, Battistutta R, Bain J, Fabbro D, Schoepfer J, Elliott M, Furet P, Meggio F, Zanotti G, Pinna LA (2003) Biochemical and three-dimensional-structural study of the specific inhibition of protein kinase CK2 by [5-oxo-5,6-dihydroindolo-(1,2-a)quinazolin-7-yl]acetic acid (IQA). Biochem J 374:639–646PubMedCentralPubMedGoogle Scholar
  71. 71.
    Pagano MA, Andrzejewska M, Ruzzene M, Sarno S, Cesaro L, Bain J, Elliott M, Meggio F, Kazimierczuk Z, Pinna LA (2004) Optimization of protein kinase CK2 inhibitors derived from 4,5,6,7-tetrabromobenzimidazole. J Med Chem 47:6239–6247PubMedGoogle Scholar
  72. 72.
    Pagano MA, Bain J, Kazimierczuk Z, Sarno S, Ruzzene M, Di Maira G, Elliott M, Orzeszko A, Cozza G, Meggio F, Pinna LA (2008) The selectivity of inhibitors of protein kinase CK2: an update. Biochem J 415:353–365PubMedGoogle Scholar
  73. 73.
    Tahtouh T, Elkins JM, Filippakopoulos P, Soundararajan M, Burgy G, Durieu E, Cochet C, Schmid RS, Lo DC, Delhommel F, Oberholzer AE, Pearl LH, Carreaux F, Bazureau JP, Knapp S, Meijer L (2012) Selectivity, cocrystal structures, and neuroprotective properties of leucettines, a family of protein kinase inhibitors derived from the marine sponge alkaloid leucettamine B. J Med Chem 55:9312–9330PubMedGoogle Scholar
  74. 74.
    Mazmanian G, Kovshilovsky M, Yen D, Mohanty A, Mohanty S, Nee A, Nissen RM (2010) The zebrafish dyrk1b gene is important for endoderm formation. Genesis 48:20–30PubMedCentralPubMedGoogle Scholar
  75. 75.
    Miyata Y, Nishida E (2011) DYRK1A binds to an evolutionarily conserved WD40-repeat protein WDR68 and induces its nuclear translocation. Biochim Biophys Acta 1813:1728–1739PubMedGoogle Scholar
  76. 76.
    Morita K, Lo Celso C, Spencer-Dene B, Zouboulis CC, Watt FM (2006) HAN11 binds mDia1 and controls GLI1 transcriptional activity. J Dermatol Sci 44:11–20PubMedGoogle Scholar
  77. 77.
    Jin J, Arias EE, Chen J, Harper JW, Walter JC (2006) A family of diverse Cul4-Ddb1-interacting proteins includes Cdt2, which is required for S phase destruction of the replication factor Cdt1. Mol Cell 23:709–721PubMedGoogle Scholar
  78. 78.
    Miyata Y, Shibata T, Aoshima M, Tsubata T, Nishida E (2014) The molecular chaperone TRiC/CCT binds to the Trp-Asp 40 (WD40) repeat protein WDR68 and promotes its folding, protein kinase DYRK1A binding, and nuclear accumulation. J Biol Chem 289:33320–33332Google Scholar
  79. 79.
    Wang B, Doan D, Roman Petersen Y, Alvarado E, Alvarado G, Bhandari A, Mohanty A, Mohanty S, Nissen RM (2013) Wdr68 requires nuclear access for craniofacial development. PLoS One 8:e54363PubMedCentralPubMedGoogle Scholar
  80. 80.
    Darling DL, Yingling J, Wynshaw-Boris A (2005) Role of 14-3-3 proteins in eukaryotic signaling and development. Curr Top Dev Biol 68:281–315PubMedGoogle Scholar
  81. 81.
    Morrison DK (2009) The 14-3-3 proteins: integrators of diverse signaling cues that impact cell fate and cancer development. Trends Cell Biol 19:16–23PubMedCentralPubMedGoogle Scholar
  82. 82.
    Alvarez M, Altafaj X, Aranda S, de la Luna S (2007) DYRK1A autophosphorylation on serine residue 520 modulates its kinase activity via 14-3-3 binding. Mol Biol Cell 18:1167–1178PubMedCentralPubMedGoogle Scholar
  83. 83.
    Kim D, Won J, Shin DW, Kang J, Kim YJ, Choi SY, Hwang MK, Jeong BW, Kim GS, Joe CO, Chung SH, Song WJ (2004) Regulation of Dyrk1A kinase activity by 14-3-3. Biochem Biophys Res Commun 323:499–504PubMedGoogle Scholar
  84. 84.
    Moriya H, Shimizu-Yoshida Y, Omori A, Iwashita S, Katoh M, Sakai A (2001) Yak1p, a DYRK family kinase, translocates to the nucleus and phosphorylates yeast Pop2p in response to a glucose signal. Genes Dev 15:1217–1228PubMedCentralPubMedGoogle Scholar
  85. 85.
    Lee P, Paik SM, Shin CS, Huh WK, Hahn JS (2011) Regulation of yeast Yak1 kinase by PKA and autophosphorylation-dependent 14-3-3 binding. Mol Microbiol 79:633–646PubMedGoogle Scholar
  86. 86.
    Negrini S, Prada I, D’Alessandro R, Meldolesi J (2013) REST: an oncogene or a tumor suppressor? Trends Cell Biol 23:289–295PubMedGoogle Scholar
  87. 87.
    Qureshi IA, Gokhan S, Mehler MF (2010) REST and CoREST are transcriptional and epigenetic regulators of seminal neural fate decisions. Cell Cycle 9:4477–4486PubMedCentralPubMedGoogle Scholar
  88. 88.
    Lu T, Aron L, Zullo J, Pan Y, Kim H, Chen Y, Yang TH, Kim HM, Drake D, Liu XS, Bennett DA, Colaiácovo MP, Yankner BA (2014) REST and stress resistance in ageing and Alzheimer’s disease. Nature 507:448–454PubMedCentralPubMedGoogle Scholar
  89. 89.
    Lepagnol-Bestel AM, Zvara A, Maussion G, Quignon F, Ngimbous B, Ramoz N, Imbeaud S, Loe-Mie Y, Benihoud K, Agier N, Salin PA, Cardona A, Khung-Savatovsky S, Kallunki P, Delabar JM, Puskas LG, Delacroix H, Aggerbeck L, Delezoide AL, Delattre O, Gorwood P, Moalic JM, Simonneau M (2009) DYRK1A interacts with the REST/NRSF-SWI/SNF chromatin remodelling complex to deregulate gene clusters involved in the neuronal phenotypic traits of Down syndrome. Hum Mol Genet 18:1405–1414PubMedGoogle Scholar
  90. 90.
    Lu M, Zheng L, Han B, Wang L, Wang P, Liu H, Sun X (2011) REST regulates DYRK1A transcription in a negative feedback loop. J Biol Chem 286:10755–10763PubMedCentralPubMedGoogle Scholar
  91. 91.
    Sommercorn J, Mulligan JA, Lozeman FJ, Krebs EG (1987) Activation of casein kinase II in response to insulin and to epidermal growth factor. Proc Natl Acad Sci U S A 84:8834–8838PubMedCentralPubMedGoogle Scholar
  92. 92.
    Ackerman P, Osheroff N (1989) Regulation of casein kinase II activity by epidermal growth factor in human A-431 carcinoma cells. J Biol Chem 264:11958–11965PubMedGoogle Scholar
  93. 93.
    Klarlund JK, Czech MP (1988) Insulin-like growth factor I and insulin rapidly increase casein kinase II activity in BALB/c 3T3 fibroblasts. J Biol Chem 263:15872–15875PubMedGoogle Scholar
  94. 94.
    Litchfield DW, Dobrowolska G, Krebs EG (1994) Regulation of casein kinase II by growth factors: a reevaluation. Cell Mol Biol Res 40:373–381PubMedGoogle Scholar
  95. 95.
    Miyata Y, Nishida E (2007) Analysis of the CK2-dependent phosphorylation of serine 13 in Cdc37 using a phospho-specific antibody and phospho-affinity gel electrophoresis. FEBS J 274:5690–5703PubMedGoogle Scholar
  96. 96.
    Seldin DC, Leder P (1995) Casein kinase IIα transgene-induced murine lymphoma: relation to theileriosis in cattle. Science 267:894–897PubMedGoogle Scholar
  97. 97.
    Miyata Y (2013) The pivotal role of CK2 in the kinome-targeting Hsp90 chaperone machinery. The Wiley-IUBMB series on biochemistry and molecular biology: protein kinase CK2. John Wiley & Sons, Inc. (Hoboken, NJ, U.S.A.)Google Scholar
  98. 98.
    Miyata Y (2009) CK2: the kinase controlling the Hsp90 chaperone machinery. Cell Mol Life Sci 66:1840–1849PubMedGoogle Scholar
  99. 99.
    Miyata Y, Nishida E (2004) CK2 controls multiple protein kinases by phosphorylating a kinase-targeting molecular chaperone Cdc37. Mol Cell Biol 24:4065–4074PubMedCentralPubMedGoogle Scholar
  100. 100.
    Miyata Y, Nishida E (2004) Supervision of multiple signaling protein kinases by the CK2-Cdc37 couple, a possible novel cancer therapeutic target. Ann N Y Acad Sci 1030:150–157PubMedGoogle Scholar
  101. 101.
    Siddiqui-Jain A, Drygin D, Streiner N, Chua P, Pierre F, O’Brien SE, Bliesath J, Omori M, Huser N, Ho C, Proffitt C, Schwaebe MK, Ryckman DM, Rice WG, Anderes K (2010) CX-4945, an orally bioavailable selective inhibitor of protein kinase CK2, inhibits prosurvival and angiogenic signaling and exhibits antitumor efficacy. Cancer Res 70:10288–10298PubMedGoogle Scholar
  102. 102.
    Battistutta R, Cozza G, Pierre F, Papinutto E, Lolli G, Sarno S, O’Brien SE, Siddiqui-Jain A, Haddach M, Anderes K, Ryckman DM, Meggio F, Pinna LA (2011) Unprecedented selectivity and structural determinants of a new class of protein kinase CK2 inhibitors in clinical trials for the treatment of cancer. Biochemistry 50:8478–8488PubMedGoogle Scholar
  103. 103.
    Pierre F, Chua PC, O’Brien SE, Siddiqui-Jain A, Bourbon P, Haddach M, Michaux J, Nagasawa J, Schwaebe MK, Stefan E, Vialettes A, Whitten JP, Chen TK, Darjania L, Stansfield R, Bliesath J, Drygin D, Ho C, Omori M, Proffitt C, Streiner N, Rice WG, Ryckman DM, Anderes K (2011) Pre-clinical characterization of CX-4945, a potent and selective small molecule inhibitor of CK2 for the treatment of cancer. Mol Cell Biochem 356:37–43PubMedGoogle Scholar
  104. 104.
    Kim J, Kim SH (2012) Druggability of the CK2 inhibitor CX-4945 as an anticancer drug and beyond. Arch Pharm Res 35:1293–1296PubMedGoogle Scholar
  105. 105.
    Hasle H, Clemmensen IH, Mikkelsen M (2000) Risks of leukaemia and solid tumours in individuals with Down’s syndrome. Lancet 355:165–169PubMedGoogle Scholar
  106. 106.
    Nižetić D, Groet J (2012) Tumorigenesis in Down’s syndrome: big lessons from a small chromosome. Nat Rev Cancer 12:721–732PubMedGoogle Scholar
  107. 107.
    Müller MR, Rao A (2010) NFAT, immunity and cancer: a transcription factor comes of age. Nat Rev Immunol 10:645–656PubMedGoogle Scholar
  108. 108.
    Baek KH, Zaslavsky A, Lynch RC, Britt C, Okada Y, Siarey RJ, Lensch MW, Park IH, Yoon SS, Minami T, Korenberg JR, Folkman J, Daley GQ, Aird WC, Galdzicki Z, Ryeom S (2009) Down’s syndrome suppression of tumour growth and the role of the calcineurin inhibitor DSCR1. Nature 459(7250):1126–1130PubMedCentralPubMedGoogle Scholar
  109. 109.
    Becker W, Sippl W (2011) Activation, regulation, and inhibition of DYRK1A. FEBS J 278:246–256PubMedGoogle Scholar
  110. 110.
    Göckler N, Jofre G, Papadopoulos C, Soppa U, Tejedor FJ, Becker W (2009) Harmine specifically inhibits protein kinase DYRK1A and interferes with neurite formation. FEBS J 276:6324–6337PubMedGoogle Scholar
  111. 111.
    Becker W, Soppa U, Tejedor FJ (2014) DYRK1A: a potential drug target for multiple Down syndrome neuropathologies. CNS Neurol Disord Drug Targets 13:26–33PubMedGoogle Scholar
  112. 112.
    Malinge S, Bliss-Moreau M, Kirsammer G, Diebold L, Chlon T, Gurbuxani S, Crispino JD (2012) Increased dosage of the chromosome 21 ortholog Dyrk1a promotes megakaryoblastic leukemia in a murine model of Down syndrome. J Clin Invest 122:948–962PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Cell and Developmental Biology, Graduate School of BiostudiesKyoto UniversitySakyo-kuJapan

Personalised recommendations