Screening of DTP Compound Libraries for CK2 Inhibitors with Focus on Natural Products

  • Tine D. Rasmussen
  • Barbara Guerra
  • Olaf-Georg IssingerEmail author
Part of the Advances in Biochemistry in Health and Disease book series (ABHD, volume 12)


Various compound libraries of the Drug Therapeutic Program (DTP) of the NIH/NCI were screened against the catalytic subunit and the tetrameric holoenzyme of protein kinase CK2. Different IC50 values were obtained for the two CK2 molecules. In the case of nortangeretin, the IC50 value was 0.34 μM for the catalytic subunit and 15 μM for the holoenzyme. In the case of coumestrol, opposite results were obtained, i.e., high IC50 for the CK2α subunit (2.7 μM) and a lower IC50 value for the holoenzyme (0.19 μM).

From the many compounds identified to inhibit CK2, we have selected 14 different compounds and listed them according to their CK2α/CK2 holoenzyme IC50 ratio.

Four compounds were tested on a panel of seven cell lines revealing considerable differences in the degree of CK2 inhibition inside the cells.


Protein kinase CK2 Casein kinase 2 Eukaryotic protein kinases CMGC kinases Signal transduction pathways Protein kinase inhibitors Small molecule compounds DTP compound libraries 



We thank the Drug Synthesis and Chemistry Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, USA, for providing us with plated and vialed samples from the various compound sets. The advice of Dr. David Newman at the start of the investigation is particularly acknowledged. We also thank the many students who have been involved in some of the screenings presented in this report. This work was supported in part by Grosserer M. Brogaard og Hustrus Mindefond and the Danish Council for Independent Research-Natural Sciences (grant 1323-00212A to B. Guerra), the Danish Cancer Society (grant 252-1109-210), and the Danish Research Council (grant 21-04-0517) to O.-G. Issinger.


  1. 1.
    Milner JA, Romagnolo DF (2010) Bioactive compounds and cancer. Springer, New YorkCrossRefGoogle Scholar
  2. 2.
    Olsen LF, Issinger O-G, Guerra B (2013) The Yin and Yang of redox regulation. Redox Rep 18:245–252. doi: 10.1179/1351000213Y.0000000059 CrossRefPubMedGoogle Scholar
  3. 3.
    Kumamoto T, Fujii M, Hou D-X (2009) Akt is a direct target for myricetin to inhibit cell transformation. Mol Cell Biochem 332:33–41. doi: 10.1007/s11010-009-0171-9 CrossRefPubMedGoogle Scholar
  4. 4.
    Walker EH, Pacold ME, Perisic O et al (2000) Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Mol Cell 6:909–919CrossRefPubMedGoogle Scholar
  5. 5.
    Lolli G, Cozza G, Mazzorana M et al (2012) Inhibition of protein kinase CK2 by flavonoids and tyrphostins. A structural insight. Biochemistry 51:6097–6107. doi: 10.1021/bi300531c CrossRefPubMedGoogle Scholar
  6. 6.
    Golub AG, Bdzhola VG, Kyshenia YV et al (2011) Structure-based discovery of novel flavonol inhibitors of human protein kinase CK2. Mol Cell Biochem 356:107–115. doi: 10.1007/s11010-011-0945-8 CrossRefPubMedGoogle Scholar
  7. 7.
    Boldyreff B, Rasmussen TL, Jensen HH et al (2008) Expression and purification of PI3 kinase alpha and development of an ATP depletion and an alphascreen PI3 kinase activity assay. J Biomol Screen 13:1035–1040. doi: 10.1177/1087057108326079 CrossRefPubMedGoogle Scholar
  8. 8.
    Guerra B, Issinger O-G (2008) Protein kinase CK2 in human diseases. Curr Med Chem 15:1870–1886CrossRefPubMedGoogle Scholar
  9. 9.
    Trembley JH, Chen Z, Unger G et al (2010) Emergence of protein kinase CK2 as a key target in cancer therapy. Biofactors 36:187–195. doi: 10.1002/biof.96 CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    St-Denis NA, Litchfield DW (2009) Protein kinase CK2 in health and disease: from birth to death: the role of protein kinase CK2 in the regulation of cell proliferation and survival. Cell Mol Life Sci 66:1817–1829. doi: 10.1007/s00018-009-9150-2 CrossRefPubMedGoogle Scholar
  11. 11.
    Filhol O, Cochet C (2009) Protein kinase CK2 in health and disease. Cell Mol Life Sci 66:1830–1839. doi: 10.1007/s00018-009-9151-1 CrossRefPubMedGoogle Scholar
  12. 12.
    Olsen BB, Boldyreff B, Niefind K, Issinger O-G (2006) Purification and characterization of the CK2alpha'-based holoenzyme, an isozyme of CK2alpha: a comparative analysis. Protein Expr Purif 47:651–661. doi: 10.1016/j.pep.2005.12.001 CrossRefPubMedGoogle Scholar
  13. 13.
    Yim H, Lee YH, Lee CH, Lee SK (1999) Emodin, an anthraquinone derivative isolated from the rhizomes of Rheum palmatum, selectively inhibits the activity of casein kinase II as a competitive inhibitor. Planta Med 65:9–13. doi: 10.1055/s-1999-13953 CrossRefPubMedGoogle Scholar
  14. 14.
    Janeczko M, Masłyk M, Szyszka R, Baier A (2011) Interactions between subunits of protein kinase CK2 and their protein substrates influences its sensitivity to specific inhibitors. Mol Cell Biochem 356:121–126. doi: 10.1007/s11010-011-0951-x CrossRefPubMedGoogle Scholar
  15. 15.
    Stalter G, Siemer S, Becht E et al (1994) Asymmetric Expression of Protein Kinase CK2 Subunits in Human Kidney Tumors. Biochem Biophys Res Commun 202:141–147. doi: 10.1006/bbrc.1994.1904 CrossRefPubMedGoogle Scholar
  16. 16.
    Deshiere A, Duchemin-Pelletier E, Spreux E et al (2013) Unbalanced expression of CK2 kinase subunits is sufficient to drive epithelial-to-mesenchymal transition by Snail1 induction. Oncogene 32:1373–1383. doi: 10.1038/onc.2012.165 CrossRefPubMedGoogle Scholar
  17. 17.
    Cho S-Y, Cho S, Park E et al (2014) Coumestrol suppresses hypoxia inducible factor 1α by inhibiting ROS mediated sphingosine kinase 1 in hypoxic PC-3 prostate cancer cells. Bioorg Med Chem Lett 24:2560–2564. doi: 10.1016/j.bmcl.2014.03.084 CrossRefPubMedGoogle Scholar
  18. 18.
    Liu S, Hsieh D, Yang Y-L et al (2013) Coumestrol from the national cancer Institute’s natural product library is a novel inhibitor of protein kinase CK2. BMC Pharmacol Toxicol 14:36. doi: 10.1186/2050-6511-14-36 CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Lee Y-H, Yuk HJ, Park K-H, Bae Y-S (2013) Coumestrol induces senescence through protein kinase CKII inhibition-mediated reactive oxygen species production in human breast cancer and colon cancer cells. Food Chem 141:381–388. doi: 10.1016/j.foodchem.2013.03.053 CrossRefPubMedGoogle Scholar
  20. 20.
    Hosoi Y, Matsumoto Y, Tomita M et al (2002) Phosphorothioate oligonucleotides, suramin and heparin inhibit DNA-dependent protein kinase activity. Br J Cancer 86:1143–1149. doi: 10.1038/sj.bjc.6600191 CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Borges S, Döppler HR, Storz P (2014) A combination treatment with DNA methyltransferase inhibitors and suramin decreases invasiveness of breast cancer cells. Breast Cancer Res Treat 144:79–91. doi: 10.1007/s10549-014-2857-2 CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Sandholt IS, Olsen BB, Guerra B, Issinger O-G (2009) Resorufin: a lead for a new protein kinase CK2 inhibitor. Anticancer Drugs 20:238–248. doi: 10.1097/CAD.0b013e328326472e CrossRefPubMedGoogle Scholar
  23. 23.
    Klopffleisch K, Issinger O-G, Niefind K (2012) Low-density crystal packing of human protein kinase CK2 catalytic subunit in complex with resorufin or other ligands: a tool to study the unique hinge-region plasticity of the enzyme without packing bias. Acta Crystallogr D Biol Crystallogr 68:883–892. doi: 10.1107/S0907444912016587 CrossRefPubMedGoogle Scholar
  24. 24.
    Battistutta R, Mazzorana M, Cendron L et al (2007) The ATP-binding site of protein kinase CK2 holds a positive electrostatic area and conserved water molecules. Chembiochem 8:1804–1809. doi: 10.1002/cbic.200700307 CrossRefPubMedGoogle Scholar
  25. 25.
    Speisky H, Cassels BK (1994) Boldo and boldine: an emerging case of natural drug development. Pharmacol Res 29:1–12CrossRefPubMedGoogle Scholar
  26. 26.
    O’Brien P, Carrasco-Pozo C, Speisky H (2006) Boldine and its antioxidant or health-promoting properties. Chem Biol Interact 159:1–17. doi: 10.1016/j.cbi.2005.09.002 CrossRefPubMedGoogle Scholar
  27. 27.
    Gerhardt D, Bertola G, Dietrich F et al (2014) Boldine induces cell cycle arrest and apoptosis in T24 human bladder cancer cell line via regulation of ERK, AKT, and GSK-3β. Urol Oncol 32:36. doi: 10.1016/j.urolonc.2013.02.012 CrossRefPubMedGoogle Scholar
  28. 28.
    Tamm I, Bablanian R, Nemes MM et al (1961) Relationship between structure of benzimidazole derivatives and selective virus inhibitory activity. Inhibition of poliovirus multiplication and cytopathic effects by 2-(alpha-hydroxybenzyl)-benzimidazole, and its 5-chloroderivative. J Exp Med 113:625–656CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Manerba M, Vettraino M, Fiume L et al (2012) Galloflavin (CAS 568-80-9): a novel inhibitor of lactate dehydrogenase. ChemMedChem 7:311–317. doi: 10.1002/cmdc.201100471 CrossRefPubMedGoogle Scholar
  30. 30.
    Farabegoli F, Vettraino M, Manerba M et al (2012) Galloflavin, a new lactate dehydrogenase inhibitor, induces the death of human breast cancer cells with different glycolytic attitude by affecting distinct signaling pathways. Eur J Pharm Sci 47:729–738. doi: 10.1016/j.ejps.2012.08.012 CrossRefPubMedGoogle Scholar
  31. 31.
    Vettraino M, Manerba M, Govoni M, Di Stefano G (2013) Galloflavin suppresses lactate dehydrogenase activity and causes MYC downregulation in Burkitt lymphoma cells through NAD/NADH-dependent inhibition of sirtuin-1. Anticancer Drugs 24:862–870. doi: 10.1097/CAD.0b013e328363ae50 CrossRefPubMedGoogle Scholar
  32. 32.
    Zschoernig B, Mahlknecht U (2009) Carboxy-terminal phosphorylation of SIRT1 by protein kinase CK2. Biochem Biophys Res Commun 381:372–377. doi: 10.1016/j.bbrc.2009.02.085 CrossRefPubMedGoogle Scholar
  33. 33.
    Kang H, Jung J-W, Kim MK, Chung JH (2009) CK2 is the regulator of SIRT1 substrate-binding affinity, deacetylase activity and cellular response to DNA-damage. PLoS One 4:e6611. doi: 10.1371/journal.pone.0006611 CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    Dixit D, Sharma V, Ghosh S et al (2012) Inhibition of Casein kinase-2 induces p53-dependent cell cycle arrest and sensitizes glioblastoma cells to tumor necrosis factor (TNFα)-induced apoptosis through SIRT1 inhibition. Cell Death Dis 3:e271. doi: 10.1038/cddis.2012.10 CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Correché ER, Enriz RD, Piovano M et al (2004) Cytotoxic and apoptotic effects on hepatocytes of secondary metabolites obtained from lichens. Altern Lab Anim 32:605–615PubMedGoogle Scholar
  36. 36.
    Wassman CD, Baronio R, Demir Ö et al (2013) Computational identification of a transiently open L1/S3 pocket for reactivation of mutant p53. Nat Commun 4:1407. doi: 10.1038/ncomms2361 CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    Lohézic-Le Dévéhat F, Tomasi S, Elix JA et al (2007) Stictic acid derivatives from the lichen Usnea articulata and their antioxidant activities. J Nat Prod 70:1218–1220. doi: 10.1021/np070145k CrossRefPubMedGoogle Scholar
  38. 38.
    Pal HC, Sharma S, Strickland LR et al (2014) Fisetin inhibits human melanoma cell invasion through promotion of mesenchymal to epithelial transition and by targeting MAPK and NFκB signaling pathways. PLoS One 9:e86338. doi: 10.1371/journal.pone.0086338 CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    Syed DN, Adhami VM, Khan MI, Mukhtar H (2013) Inhibition of Akt/mTOR signaling by the dietary flavonoid fisetin. Anticancer Agents Med Chem 13:995–1001CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    Adhami VM, Syed DN, Khan N, Mukhtar H (2012) Dietary flavonoid fisetin: a novel dual inhibitor of PI3K/Akt and mTOR for prostate cancer management. Biochem Pharmacol 84:1277–1281. doi: 10.1016/j.bcp.2012.07.012 CrossRefPubMedGoogle Scholar
  41. 41.
    Currais A, Chiruta C, Goujon-Svrzic M et al (2014) Screening and identification of neuroprotective compounds relevant to Alzheimer’s disease from medicinal plants of S. Tomé e Príncipe. J Ethnopharmacol. doi: 10.1016/j.jep.2014.06.046 PubMedGoogle Scholar
  42. 42.
    Jang KY, Jeong S-J, Kim S-H et al (2012) Activation of reactive oxygen species/AMP activated protein kinase signaling mediates fisetin-induced apoptosis in multiple myeloma U266 cells. Cancer Lett 319:197–202. doi: 10.1016/j.canlet.2012.01.008 CrossRefPubMedGoogle Scholar
  43. 43.
    Jung CH, Kim H, Ahn J et al (2013) Fisetin regulates obesity by targeting mTORC1 signaling. J Nutr Biochem 24:1547–1554. doi: 10.1016/j.jnutbio.2013.01.003 CrossRefPubMedGoogle Scholar
  44. 44.
    Karioti A, Bilia AR (2010) Hypericins as potential leads for new therapeutics. Int J Mol Sci 11:562–594. doi: 10.3390/ijms11020562 CrossRefPubMedCentralPubMedGoogle Scholar
  45. 45.
    Gronquist M, Bezzerides A, Attygalle A et al (2001) Attractive and defensive functions of the ultraviolet pigments of a flower (Hypericum calycinum). Proc Natl Acad Sci U S A 98:13745–13750. doi: 10.1073/pnas.231471698 CrossRefPubMedCentralPubMedGoogle Scholar
  46. 46.
    Krammer B, Verwanger T (2012) Molecular response to hypericin-induced photodamage. Curr Med Chem 19:793–798CrossRefPubMedGoogle Scholar
  47. 47.
    Jocham D, Stepp H, Waidelich R (2008) Photodynamic diagnosis in urology: state-of-the-art. Eur Urol 53:1138–1148. doi: 10.1016/j.eururo.2007.11.048 CrossRefPubMedGoogle Scholar
  48. 48.
    Amin A, Gali-Muhtasib H, Ocker M, Schneider-Stock R (2009) Overview of major classes of plant-derived anticancer drugs. Int J Biomed Sci 5:1–11PubMedCentralPubMedGoogle Scholar
  49. 49.
    Hošek J, Toniolo A, Neuwirth O, Bolego C (2013) Prenylated and geranylated flavonoids increase production of reactive oxygen species in mouse macrophages but inhibit the inflammatory response. J Nat Prod 76:1586–1591. doi: 10.1021/np400242e CrossRefPubMedGoogle Scholar
  50. 50.
    Yang R, Hanwell H, Zhang J et al (2011) Antiproliferative activity of pomiferin in normal (MCF-10A) and transformed (MCF-7) breast epithelial cells. J Agric Food Chem 59:13328–13336. doi: 10.1021/jf202898g CrossRefPubMedGoogle Scholar
  51. 51.
    Son IH, Chung I-M, Lee SI et al (2007) Pomiferin, histone deacetylase inhibitor isolated from the fruits of Maclura pomifera. Bioorg Med Chem Lett 17:4753–4755. doi: 10.1016/j.bmcl.2007.06.060 CrossRefPubMedGoogle Scholar
  52. 52.
    Bajer MM, Kunze MM, Blees JS et al (2014) Characterization of pomiferin triacetate as a novel mTOR and translation inhibitor. Biochem Pharmacol 88:313–321. doi: 10.1016/j.bcp.2014.01.034 CrossRefPubMedGoogle Scholar
  53. 53.
    Grace MH, Wilsonb GR, Kandil FE et al (2009) Characteristic flavonoids from Acacia burkittii and A. acuminata heartwoods and their differential cytotoxicity to normal and leukemia cells. Nat Prod Commun 4:69–76PubMedGoogle Scholar
  54. 54.
    Rezaei-Sadabady R, Eidi A, Zarghami N, Barzegar A (2014) Intracellular ROS protection efficiency and free radical-scavenging activity of quercetin and quercetin-encapsulated liposomes. Artif Cells Nanomed Biotechnol 1–7. doi:  10.3109/21691401.2014.926456
  55. 55.
    Rockenbach L, Bavaresco L, Fernandes Farias P et al (2013) Alterations in the extracellular catabolism of nucleotides are involved in the antiproliferative effect of quercetin in human bladder cancer T24 cells. Urol Oncol 31:1204–1211. doi: 10.1016/j.urolonc.2011.10.009 CrossRefPubMedGoogle Scholar
  56. 56.
    Kim Y, Kim W-J, Cha E-J (2011) Quercetin-induced growth inhibition in human bladder cancer cells is associated with an increase in Ca-activated K channels. Korean J Physiol Pharmacol 15:279–283. doi: 10.4196/kjpp.2011.15.5.279 CrossRefPubMedCentralPubMedGoogle Scholar
  57. 57.
    Sak K (2014) Site-specific anticancer effects of dietary flavonoid quercetin. Nutr Cancer 66:177–193. doi: 10.1080/01635581.2014.864418 CrossRefPubMedGoogle Scholar
  58. 58.
    Men K, Duan X, Wei XW et al (2014) Nanoparticle-delivered quercetin for cancer therapy. Anticancer Agents Med Chem 14:826–832CrossRefPubMedGoogle Scholar
  59. 59.
    Niefind K, Guerra B, Ermakowa I, Issinger O-G (2001) Crystal structure of human protein kinase CK2: insights into basic properties of the CK2 holoenzyme. EMBO J 20:5320–5331. doi: 10.1093/emboj/20.19.5320 CrossRefPubMedCentralPubMedGoogle Scholar
  60. 60.
    Boldyreff B, Meggio F, Pinna LA, Issinger O-G (1994) Efficient autophosphorylation and phosphorylation of the beta-subunit by casein kinase-2 require the integrity of an acidic cluster 50 residues downstream from the phosphoacceptor site. J Biol Chem 269:4827–4831PubMedGoogle Scholar
  61. 61.
    Boldyreff B, Meggio F, Pinna LA, Issinger O-G (1994) Protein kinase CK2 structure-function relationship: effects of the beta subunit on reconstitution and activity. Cell Mol Biol Res 40:391–399PubMedGoogle Scholar
  62. 62.
    Meggio F, Boldyreff B, Issinger O-G, Pinna LA (1994) Casein kinase 2 down-regulation and activation by polybasic peptides are mediated by acidic residues in the 55-64 region of the beta-subunit. A study with calmodulin as phosphorylatable substrate. Biochemistry 33:4336–4342CrossRefPubMedGoogle Scholar
  63. 63.
    Raaf J, Brunstein E, Issinger O-G, Niefind K (2008) The interaction of CK2alpha and CK2beta, the subunits of protein kinase CK2, requires CK2beta in a preformed conformation and is enthalpically driven. Protein Sci 17:2180–2186. doi: 10.1110/ps.037770.108 CrossRefPubMedCentralPubMedGoogle Scholar
  64. 64.
    Raaf J, Brunstein E, Issinger O-G, Niefind K (2008) The CK2 alpha/CK2 beta interface of human protein kinase CK2 harbors a binding pocket for small molecules. Chem Biol 15:111–117. doi: 10.1016/j.chembiol.2007.12.012 CrossRefPubMedGoogle Scholar
  65. 65.
    Raaf J, Issinger O-G, Niefind K (2008) Insights from soft X-rays: the chlorine and sulfur sub-structures of a CK2alpha/DRB complex. Mol Cell Biochem 316:15–23. doi: 10.1007/s11010-008-9826-1 CrossRefPubMedGoogle Scholar
  66. 66.
    Olsen BB, Fischer U, Rasmussen TL et al (2011) Lack of the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is accompanied by increased CK2α' levels. Mol Cell Biochem 356:139–147. doi: 10.1007/s11010-011-0954-7 CrossRefPubMedGoogle Scholar
  67. 67.
    Olsen BB, Guerra B (2008) Ability of CK2beta to selectively regulate cellular protein kinases. Mol Cell Biochem 316:115–126. doi: 10.1007/s11010-008-9817-2 CrossRefPubMedGoogle Scholar
  68. 68.
    Skjøth IHE, Issinger O-G (2006) Profiling of signaling molecules in four different human prostate carcinoma cell lines before and after induction of apoptosis. Int J Oncol 28:217–229PubMedGoogle Scholar
  69. 69.
    Yde CW, Gyrd-Hansen M, Lykkesfeldt AE et al (2007) Breast cancer cells with acquired antiestrogen resistance are sensitized to cisplatin-induced cell death. Mol Cancer Ther 6:1869–1876. doi: 10.1158/1535-7163.MCT-07-0072 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Tine D. Rasmussen
    • 1
  • Barbara Guerra
    • 2
  • Olaf-Georg Issinger
    • 3
    Email author
  1. 1.Clinical PathologyOUHOdense CDenmark
  2. 2.BMB, SDUOdenseDenmark
  3. 3.KinaseDetect ApSKrusåDenmark

Personalised recommendations