Protein Kinase CK2 and Dysregulated Oncogenic Inflammatory Signaling Pathways

  • Etty N. BenvenisteEmail author
  • G. Kenneth Gray
  • Braden C. McFarland
Part of the Advances in Biochemistry in Health and Disease book series (ABHD, volume 12)


Near simultaneously with the explosive expansion in the understanding of CK2’s prodigious promiscuity, the kinase was and has been implicated in a large number of cancers through a variety of mechanisms. Over the past few years, tremendous progress has been made in describing the diverse ways in which CK2 signaling promotes tumorigenesis, tumor maintenance, and progression. In this chapter, we address CK2’s role in cancer generally and then provide a detailed overview of CK2’s ability to regulate two oncogenic signaling pathways, NF-κB and JAK/STAT, in myriad contexts.


JAK/STAT NF-κB Inflammation Cancer Signaling Cytokines Gene transcription GBM Breast cancer TCGA 



This work was supported in part by NIH grant CA158534 (ENB), NS057563 (ENB), NS050665 (ENB), ABTA Basic Research Fellowship in Honor of Paul Fabbri (BCM), and the William E. Cash Jr. Memorial Fund in Neuro-Oncology Research (BCM).


  1. 1.
    Meggio F, Pinna LA (2003) One-thousand-and-one substrates of protein kinase CK2? FASEB J 17(3):349–368PubMedGoogle Scholar
  2. 2.
    Ruzzene M, Pinna LA (2010) Addiction to protein kinase CK2: A common denominator of diverse cancer cells? Biochim Biophys Acta 1804(3):499–504. doi: 10.1016/j.bbapap.2009.07.018, Epub 2009 Aug 6PubMedGoogle Scholar
  3. 3.
    Duncan JS, Litchfield DW (2008) Too much of a good thing: The role of protein kinase CK2 in tumorigenesis and prospects for therapeutic inhibition of CK2. Biochim Biophys Acta 1784(1):33–47PubMedGoogle Scholar
  4. 4.
    Bian Y, Ye M, Wang C, Cheng K, Song C, Dong M, Pan Y, Qin H, Zou H (2013) Global screening of CK2 kinase substrates by an integrated phosphoproteomics workflow. Sci Rep 3:3460. doi: 10.1038/srep03460 PubMedCentralPubMedGoogle Scholar
  5. 5.
    Piazza F, Manni S, Ruzzene M, Pinna LA, Gurrieri C, Semenzato G (2012) Protein kinase CK2 in hematologic malignancies: reliance on a pivotal cell survival regulator by oncogenic signaling pathways. Leukemia 26(6):1174–1179. doi: 10.1038/leu.2011.385 PubMedGoogle Scholar
  6. 6.
    Salvi M, Sarno S, Cesaro L, Nakamura H, Pinna LA (2009) Extraordinary pleiotropy of protein kinase CK2 revealed by weblogo phosphoproteome analysis. Biochim Biophys Acta 1793(5):847–859. doi: 10.1016/j.bbamcr.2009.01.013, S0167-4889(09)00029-9 [pii]PubMedGoogle Scholar
  7. 7.
    St-Denis NA, Litchfield DW (2009) Protein kinase CK2 in health and disease: From birth to death: the role of protein kinase CK2 in the regulation of cell proliferation and survival. Cell Mol Life Sci 66(11–12):1817–1829PubMedGoogle Scholar
  8. 8.
    Canton DA, Litchfield DW (2006) The shape of things to come: an emerging role for protein kinase CK2 in the regulation of cell morphology and the cytoskeleton. Cell Signal 18(3):267–275. doi: 10.1016/j.cellsig.2005.07.008 PubMedGoogle Scholar
  9. 9.
    Miyata Y, Nishida E (2004) CK2 controls multiple protein kinases by phosphorylating a kinase-targeting molecular chaperone, Cdc37. Mol Cell Biol 24(9):4065–4074PubMedCentralPubMedGoogle Scholar
  10. 10.
    Montenarh M (2014) Protein kinase CK2 and angiogenesis. Adv Clin Exp Med 23(2):153–158PubMedGoogle Scholar
  11. 11.
    Vilk G, Weber JE, Turowec JP, Duncan JS, Wu C, Derksen DR, Zien P, Sarno S, Donella-Deana A, Lajoie G, Pinna LA, Li SS, Litchfield DW (2008) Protein kinase CK2 catalyzes tyrosine phosphorylation in mammalian cells. Cell Signal 20(11):1942–1951PubMedGoogle Scholar
  12. 12.
    Zheng Y, Qin H, Stuart F, Deng L, Litchfield DW, Terfferi A, Pardanani A, Lin F-T, Li J, Sha B, Benveniste EN (2011) A CK2-dependent mechanism for activation of the JAK-STAT signaling pathway. Blood 118(1):156–166PubMedCentralPubMedGoogle Scholar
  13. 13.
    Basnet H, Su XB, Tan Y, Meisenhelder J, Merkurjev D, Ohgi KA, Hunter T, Pillus L, Rosenfeld MG (2014) Tyrosine phosphorylation of histone H2A by CK2 regulates transcriptional elongation. Nature doi:10.1038/nature13736 1-13. doi:10.1038/nature13736Google Scholar
  14. 14.
    Lou DY, Dominguez I, Toselli P, Landesman-Bollag E, O’Brien C, Seldin DC (2008) The alpha catalytic subunit of protein kinase CK2 is required for mouse embryonic development. Mol Cell Biol 28(1):131–139PubMedCentralPubMedGoogle Scholar
  15. 15.
    Buchou T, Vernet M, Blond O, Jensen HH, Pointu H, Olsen BB, Cochet C, Issinger OG, Boldyreff B (2003) Disruption of the regulatory β subunit of protein kinase CK2 in mice leads to a cell-autonomous defect and early embryonic lethality. Mol Cell Biol 23(3):908–915PubMedCentralPubMedGoogle Scholar
  16. 16.
    Cozza G, Pinna LA, Moro S (2012) Kinase Ck2 inhibition: An update. Curr Med Chem 20(5):671–693. doi: 10.2174/092986713804999312 Google Scholar
  17. 17.
    Bischoff N, Olsen B, Raaf J, Bretner M, Issinger OG, Niefind K (2011) Structure of the human protein kinase CK2 catalytic subunit CK2alpha’ and interaction thermodynamics with the regulatory subunit CK2beta. J Mol Biol 407(1):1–12. doi: 10.1016/j.jmb.2011.01.020 PubMedGoogle Scholar
  18. 18.
    Duncan JS, Turowec JP, Duncan KE, Vilk G, Wu C, Luscher B, Li SSC, Gloor GB, Litchfield DW (2011) A peptide-based target screen implicates the protein kinase CK2 in the global regulation of caspase signaling. Sci Signal 4(172):30. doi: 10.1126/scisignal.2001682 Google Scholar
  19. 19.
    Turowec JP, Vilk G, Gabriel M, Litchfield DW (2013) Characterizing the convergence of protein kinase CK2 and caspase-3 reveals isoform-specific phosphorylation of caspase-3 by CK2alpha’: implications for pathological roles of CK2 in promoting cancer cell survival. Oncotarget 4(4):560–571PubMedCentralPubMedGoogle Scholar
  20. 20.
    Filhol O, Cochet C (2011) Protein kinases curb cell death. Sci Signal 4(172):pe26, 10.1126/scisignal.2001921PubMedGoogle Scholar
  21. 21.
    Hanif IM, Shazib MA, Ahmad KA, Pervaiz S (2011) Casein Kinase II: an attractive target for anti-cancer drug design. Int J Biochem Cell Biol 42(10):1602–1605. doi: 10.1016/j.biocel.2010.06.010, S1357-2725(10)00207-4 [pii]Google Scholar
  22. 22.
    Trembley JH, Chen Z, Unger G, Slaton J, Kren BT, Van Waes C, Ahmed K (2010) Emergence of protein kinase CK2 as a key target in cancer therapy. Biofactors 36(3):187–195. doi: 10.1002/biof.96 PubMedCentralPubMedGoogle Scholar
  23. 23.
    Trembley JH, Wang G, Unger G, Slaton J, Ahmed K (2009) Protein kinase CK2 in health and disease: CK2: a key player in cancer biology. Cell Mol Life Sci 66(11–12):1858–1867. doi: 10.1007/s00018-009-9154-y PubMedGoogle Scholar
  24. 24.
    Dominguez I, Sonenshein GE, Seldin DC (2009) Protein kinase CK2 in health and disease: CK2 and its role in Wnt and NF-kappaB signaling: linking development and cancer. Cell Mol Life Sci 66(11–12):1850–1857PubMedCentralPubMedGoogle Scholar
  25. 25.
    Trembley JH, Unger GM, Korman VL, Tobolt DK, Kazimierczuk Z, Pinna LA, Kren BT, Ahmed K (2012) Nanoencapsulated anti-CK2 small molecule drug or siRNA specifically targets malignant cancer but not benign cells. Cancer Lett 315(1):48–58. doi:10.1016/j.canlet.2011.10.007PubMedCentralPubMedGoogle Scholar
  26. 26.
    Channavajhala P, Seldin DC (2002) Functional interaction of protein kinase CK2 and c-Myc in lymphomagenesis. Oncogene 21(34):5280–5288PubMedGoogle Scholar
  27. 27.
    Landesman-Bollag E, Channavajhala PL, Cardiff RD, Seldin DC (1998) p53 deficiency and misexpression of protein kinase CK2α collaborate in the development of thymic lymphomas in mice. Oncogene 16(23):2965–2974PubMedGoogle Scholar
  28. 28.
    Scaglioni PP, Yung TM, Cai LF, Erdjument-Bromage H, Kaufman AJ, Singh B, Teruya-Feldstein J, Tempst P, Pandolfi PP (2006) A CK2-dependent mechanism for degradation of the PML tumor suppressor. Cell 126(2):269–283PubMedGoogle Scholar
  29. 29.
    Omuro A, DeAngelis LM (2013) Glioblastoma and other malignant gliomas: a clinical review. JAMA 310(17):1842–1850. doi: 10.1001/jama.2013.280319 PubMedGoogle Scholar
  30. 30.
    Verhaak RGW, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, Alexe G, Lawrence M, O’Kelly M, Tamayo P, Weir BA, Gabriel S, Winckler W, Gupta S, Jakkula L, Feiler HS, Hodgson JG, James CD, Sarkaria JN, Brennan C, Kahn A, Spellman PT, Wilson RK, Speed TP, Gray JW, Meyerson M, Getz G, Perou CM, Hayes DN (2010) Integrated genomic analysis identifies clinically relevant subtypes of Glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17(1):98–110. doi: 10.1016/j.ccr.2009.12.020 PubMedCentralPubMedGoogle Scholar
  31. 31.
    Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996PubMedGoogle Scholar
  32. 32.
    Zheng Y, McFarland BC, Drygin D, Yu H, Bellis SL, Kim H, Bredel M, Benveniste EN (2013) Targeting protein kinase CK2 suppresses prosurvival signaling pathways and growth of glioblastoma. Clin Cancer Res 19(23):1–11. doi: 10.1158/1078-0432.ccr-13-0265 Google Scholar
  33. 33.
    Deshiere A, Duchemin-Pelletier E, Spreux E, Ciais D, Forcet C, Cochet C, Filhol O (2011) Regulation of epithelial to mesenchymal transition: CK2beta on stage. Mol Cell Biochem 356(1–2):11–20. doi: 10.1007/s11010-011-0942-y PubMedGoogle Scholar
  34. 34.
    Deshiere A, Duchemin-Pelletier E, Spreux E, Ciais D, Combes F, Vandenbrouck Y, Coute Y, Mikaelian I, Giusiano S, Charpin C, Cochet C, Filhol O (2012) Unbalanced expression of CK2 kinase subunits is sufficient to drive epithelial-to-mesenchymal transition by Snail1 induction. Oncogene 32:1373–1383. doi: 10.1038/onc.2012.165 PubMedGoogle Scholar
  35. 35.
    Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, Speed D, Lynch AG, Samarajiwa S, Yuan Y, Graf S, Ha G, Haffari G, Bashashati A, Russell R, McKinney S, Group M, Langerod A, Green A, Provenzano E, Wishart G, Pinder S, Watson P, Markowetz F, Murphy L, Ellis I, Purushotham A, Borresen-Dale AL, Brenton JD, Tavare S, Caldas C, Aparicio S (2012) The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486(7403):346–352. doi: 10.1038/nature10983 PubMedCentralPubMedGoogle Scholar
  36. 36.
    Gray GK, McFarland BC, Rowse AL, Gibson SA, Benveniste EN (2014) Therapeutic CK2 inhibition attenuates diverse prosurvival signaling cascades and decreases cell viability in human breast cancer cells. Oncotarget 5(15):6484–6496PubMedCentralPubMedGoogle Scholar
  37. 37.
    Gray J, Druker B (2012) Genomics: the breast cancer landscape. Nature 486(7403):328–329. doi: 10.1038/486328a PubMedGoogle Scholar
  38. 38.
    Luo J, Solimini NL, Elledge SJ (2009) Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 136(5):823–837PubMedCentralPubMedGoogle Scholar
  39. 39.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. doi: 10.1016/j.cell.2011.02.013 PubMedGoogle Scholar
  40. 40.
    Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70PubMedGoogle Scholar
  41. 41.
    Di Maira G, Brustolon F, Bertacchini J, Tosoni K, Marmiroli S, Pinna LA, Ruzzene M (2007) Pharmacological inhibition of protein kinase CK2 reverts the multidrug resistance phenotype of a CEM cell line characterized by high CK2 level. Oncogene 26(48):6915–6926. doi: 10.1038/sj.onc.1210495, 1210495 [pii]PubMedGoogle Scholar
  42. 42.
    Stolarczyk EI, Reiling CJ, Pickin KA, Coppage R, Knecht MR, Paumi CM (2012) Casein kinase 2alpha (CK2alpha) regulates multidrug resistance associated protein (MRP1) function via phosphorylation of Thr249. Mol Pharmacol 82(3):488–499. doi: 10.1124/mol.112.078295 PubMedCentralPubMedGoogle Scholar
  43. 43.
    Zanin S, Borgo C, Girardi C, O’Brien SE, Miyata Y, Pinna LA, Donella-Deana A, Ruzzene M (2012) Effects of the CK2 inhibitors CX-4945 and CX-5011 on drug-resistant cells. PLoS One 7(11):e49193. doi: 10.1371/journal.pone.0049193 PubMedCentralPubMedGoogle Scholar
  44. 44.
    Cheng P, Kumar V, Liu H, Youn JI, Fishman M, Sherman S, Gabrilovich D (2013) Effects of Notch signaling on regulation of myeloid cell differentiation in cancer. Cancer Res 74(1):141–152. doi: 10.1158/0008-5472.CAN-13-1686 PubMedGoogle Scholar
  45. 45.
    Hoffmann A, Natoli G, Ghosh G (2006) Transcriptional regulation via the NF-κB signaling module. Oncogene 25(51):6706–6716PubMedGoogle Scholar
  46. 46.
    Perkins ND (2012) The diverse and complex roles of NF-kappaB subunits in cancer. Nat Rev Cancer 12(2):121–132. doi: 10.1038/nrc3204 PubMedGoogle Scholar
  47. 47.
    Fradet V, Lessard L, Begin LR, Karakiewicz P, Masson AM, Saad F (2004) Nuclear factor-kappaB nuclear localization is predictive of biochemical recurrence in patients with positive margin prostate cancer. Clin Cancer Res 10(24):8460–8464. doi: 10.1158/1078-0432.CCR-04-0764 PubMedGoogle Scholar
  48. 48.
    Ben-Neriah Y, Karin M (2011) Inflammation meets cancer, with NF-kappaB as the matchmaker. Nat Immunol 12(8):715–723. doi: 10.1038/ni.2060 PubMedGoogle Scholar
  49. 49.
    Grivennikov SI, Karin M (2010) Dangerous liaisons: STAT3 and NF-kappaB collaboration and crosstalk in cancer. Cytokine Growth Factor Rev 21(1):11–19. doi: 10.1016/j.cytogfr.2009.11.005, S1359-6101(09)00112-9 [pii]PubMedCentralPubMedGoogle Scholar
  50. 50.
    Karin M (2009) NF-kappaB as a critical link between inflammation and cancer. Cold Spring Harb Perspect Biol 1(5):1–14. doi: 10.1101/cshperspect.a000141 Google Scholar
  51. 51.
    Romieu-Mourez R, Landesman-Bollag E, Seldin DC, Sonenshein GE (2002) Protein kinase CK2 promotes aberrant activation of nuclear factor-κB, transformed phenotype, and survival of breast cancer cells. Cancer Res 62(22):6770–6778PubMedGoogle Scholar
  52. 52.
    Romieu-Mourez R, Landesman-Bollag E, Seldin DC, Traish AM, Mercurio F, Sonenshein GE (2001) Roles of IKK kinases and protein kinase CK2 in activation of nuclear factor-κB in breast cancer. Cancer Res 61:3810–3818PubMedGoogle Scholar
  53. 53.
    Raychaudhuri B, Han Y, Lu T, Vogelbaum MA (2007) Aberrant constitutive activation of nuclear factor κB in glioblastoma multiforme drives invasive phenotype. J Neuro Oncol 85(1):39–47Google Scholar
  54. 54.
    Zhao X, Laver T, Hong S, Twitty G, DeVos A, DeVos M, Benveniste E, Nozell S (2011) An NF-κB p65-cIAP2 link is necessary for mediating resistance to TNF-α induced cell death in gliomas. J Neuro Oncol 102(3):367–381. doi: 10.1007/s11060-010-0346-y Google Scholar
  55. 55.
    Bredel M, Scholtens DM, Yadav AK, Alvarez AA, Renfrow JJ, Chandler JP, Yu IL, Carro MS, Dai F, Tagge MJ, Ferrarese R, Bredel C, Phillips HS, Lukac PJ, Robe PA, Weyerbrock A, Vogel H, Dubner S, Mobley B, He X, Scheck AC, Sikic BI, Aldape KD, Chakravarti A, Harsh GR (2011) NFKBIA deletion in Glioblastomas. N Engl J Med 364(7):627–637. doi: 10.1056/NEJMoa1006312 PubMedCentralPubMedGoogle Scholar
  56. 56.
    Bredel M, Bredel C, Juric D, Duran GE, Yu RX, Harsh GR, Vogel H, Recht LD, Scheck AC, Sikic BI (2006) Tumor necrosis factor-alpha-induced protein 3 as a putative regulator of nuclear factor-kappaB-mediated resistance to O6-alkylating agents in human glioblastomas. J Clin Oncol 24(2):274–287PubMedGoogle Scholar
  57. 57.
    Mayo MW, Wang C-Y, Cogswell PC, Rogers-Graham KS, Lowe SW, Der CJ, Baldwin AS Jr (1997) Requirements of NF-κB activation to suppress p53-independent apoptosis induced by oncogenic Ras. Science 278:1812–1815PubMedGoogle Scholar
  58. 58.
    Yu M, Yeh J, Van Waes C (2006) Protein kinase casein kinase 2 mediates inhibitor-κB kinase and aberrant nuclear factor-κB activation by serum factor(s) in head and neck squamous carcinoma cells. Cancer Res 66(13):6722–6731PubMedCentralPubMedGoogle Scholar
  59. 59.
    Kato T Jr, Delhase M, Hoffmann A, Karin M (2003) CK2 is a C-terminal IκB kinase responsible for NF-κB activation during the UV response. Mol Cell 12(4):829–839PubMedGoogle Scholar
  60. 60.
    Wang D, Westerheide SD, Hanson JL, Baldwin AS Jr (2000) Tumor necrosis factor α-induced phosphorylation of RelA/p65 on Ser529 is controlled by casein kinase II. J Biol Chem 275(42):32592–32597PubMedGoogle Scholar
  61. 61.
    Huang Q, Shen HM, Ong CN (2004) Inhibitory effect of emodin on tumor invasion through suppression of activator protein-1 and nuclear factor-kappaB. Biochem Pharmacol 68(2):361–371. doi: 10.1016/j.bcp.2004.03.032 PubMedGoogle Scholar
  62. 62.
    Marschke RF, Borad MJ, McFarland RW, Alvarez RH, Lim JK, Padgett CS, Von Hoff DD, O’Brien SE, Northfelt DW (2011) Findings from the phase I clinical trials of CX-4945, an orally available inhibitor of CK2. ASCO Meeting Abstracts 29(15 suppl):3087Google Scholar
  63. 63.
    Sansone P, Storci G, Tavolari S, Guarnieri T, Giovannini C, Taffurelli M, Ceccarelli C, Santini D, Paterini P, Marcu KB, Chieco P, Bonafe M (2007) IL-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland. J Clin Invest 117(12):3988–4002PubMedCentralPubMedGoogle Scholar
  64. 64.
    Kim MY, Oskarsson T, Acharyya S, Nguyen DX, Zhang XH, Norton L, Massague J (2009) Tumor self-seeding by circulating cancer cells. Cell 139(7):1315–1326. doi: 10.1016/j.cell.2009.11.025, S0092-8674(09)01437-8 [pii]PubMedCentralPubMedGoogle Scholar
  65. 65.
    Siddiqui-Jain A, Drygin D, Streiner N, Chua P, Pierre F, O’Brien SE, Bliesath J, Omori M, Huser N, Ho C, Proffitt C, Schwaebe MK, Ryckman DM, Rice WG, Anderes K (2011) CX-4945, an orally bioavailable selective inhibitor of protein kinase CK2, inhibits prosurvival and angiogenic signaling and exhibits antitumor efficacy. Cancer Res 70(24):10288–10298. doi: 10.1158/0008-5472.CAN-10-1893, 70/24/10288 [pii]Google Scholar
  66. 66.
    Liu A, Chen H, Wei W, Ye S, Liao W, Gong J, Jiang Z, Wang L, Lin S (2011) Antiproliferative and antimetastatic effects of emodin on human pancreatic cancer. Oncol Rep 26(1):81–89. doi: 10.3892/or.2011.1257 PubMedGoogle Scholar
  67. 67.
    Piazza FA, Ruzzene M, Gurrieri C, Montini B, Bonanni L, Chioetto G, Di Maira G, Barbon F, Cabrelle A, Zambello R, Adami F, Trentin L, Pinna LA, Semenzato G (2006) Multiple myeloma cell survival relies on high activity of protein kinase CK2. Blood 108(5):1698–1707PubMedGoogle Scholar
  68. 68.
    Manni S, Brancalion A, Mandato E, Tubi LQ, Colpo A, Pizzi M, Cappellesso R, Zaffino F, Di Maggio SA, Cabrelle A, Marino F, Zambello R, Trentin L, Adami F, Gurrieri C, Semenzato G, Piazza F (2013) Protein kinase CK2 inhibition down modulates the NF-kappaB and STAT3 survival pathways, enhances the cellular proteotoxic stress and synergistically boosts the cytotoxic effect of bortezomib on multiple myeloma and mantle cell lymphoma cells. PLoS One 8(9):1–16. doi: 10.1371/journal.pone.0075280 Google Scholar
  69. 69.
    Gray GK, McFarland BC, Nozell SE, Benveniste EN (2014) NF-kappaB and STAT3 in glioblastoma: therapeutic targets coming of age. Expert Rev Neurother doi; 10.1586/14737175.2014.964211 (Early online):1-14. doi:10.1586/14737175.2014.964211Google Scholar
  70. 70.
    Nogueira L, Ruiz-Ontanon P, Vazquez-Barquero A, Lafarga M, Berciano MT, Aldaz B, Grande L, Casafont I, Segura V, Robles EF, Suarez D, Garcia LF, Martinez-Climent JA, Fernandez-Luna JL (2011) Blockade of the NFkappaB pathway drives differentiating glioblastoma-initiating cells into senescence both in vitro and in vivo. Oncogene 30(32):3537–3548. doi: 10.1038/onc.2011.74 PubMedGoogle Scholar
  71. 71.
    Bonavia R, Inda MM, Vandenberg S, Cheng SY, Nagane M, Hadwiger P, Tan P, Sah DW, Cavenee WK, Furnari FB (2011) EGFRvIII promotes glioma angiogenesis and growth through the NF-kappaB, interleukin-8 pathway. Oncogene 31:4054–4066. doi: 10.1038/onc.2011.563 PubMedCentralPubMedGoogle Scholar
  72. 72.
    Nozell S, Laver T, Moseley D, Nowoslawski L, DeVos M, Atkinson GP, Harrison K, Nabors LB, Benveniste EN (2008) The ING4 tumor suppressor attenuates NF-κB activity at the promoter of target genes. Mol Cell Biol 28(21):6635–6642Google Scholar
  73. 73.
    Atkinson GP, Nozell SE, Harrison DK, Stonecypher MS, Chen D, Benveniste EN (2009) The prolyl isomerase Pin1 regulates the NF-kappaB signaling pathway and interleukin-8 expression in glioblastoma. Oncogene 28:3735–3745. doi: 10.1038/onc.2009.232 PubMedGoogle Scholar
  74. 74.
    Dixit D, Sharma V, Ghosh S, Mehta VS, Sen E (2012) Inhibition of casein kinase-2 induces p53-dependent cell cycle arrest and sensitizes glioblastoma cells to tumor necrosis factor (TNFalpha)-induced apoptosis through SIRT1 inhibition. Cell Death Dis 3:e271. doi:10.1038/cddis.2012.10PubMedCentralPubMedGoogle Scholar
  75. 75.
    O’Shea JJ, Plenge R (2012) JAK and STAT signaling molecules in immunoregulation and immune-mediated disease. Immunity 36(4):542–550. doi: 10.1016/j.immuni.2012.03.014 PubMedCentralPubMedGoogle Scholar
  76. 76.
    Baker BJ, Akhtar LN, Benveniste EN (2009) SOCS1 and SOCS3 in the control of CNS immunity. Trends Immunol 30(8):392–400PubMedCentralPubMedGoogle Scholar
  77. 77.
    Shuai K (2006) Regulation of cytokine signaling pathways by PIAS proteins. Cell Res 16(2):196–202PubMedGoogle Scholar
  78. 78.
    Yoshimura A, Suzuki M, Sakaguchi R, Hanada T, Yasukawa H (2012) SOCS, Inflammation, and Autoimmunity. Front Immunol 3(20):1–9. doi: 10.3389/fimmu.2012.00020 Google Scholar
  79. 79.
    Stark GR, Darnell JE Jr (2012) The JAK-STAT pathway at twenty. Immunity 36(4):503–514. doi: 10.1016/j.immuni.2012.03.013 PubMedCentralPubMedGoogle Scholar
  80. 80.
    Yu H, Pardoll D, Jove R (2009) STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9(11):798–809PubMedGoogle Scholar
  81. 81.
    Frank DA (2013) Transcription factor STAT3 as a prognostic marker and therapeutic target in cancer. J Clin Oncol 31(36):4560–4561. doi: 10.1200/JCO.2013.52.8414 PubMedGoogle Scholar
  82. 82.
    Brantley E, Benveniste EN (2008) Signal transducer and activator of transcription-3: A molecular hub for signaling pathways in gliomas. Mol Cancer Res 6(5):675–684PubMedGoogle Scholar
  83. 83.
    McFarland BC, Hong SW, Rajbhandari R, Twitty GB, Gray GK, Yu H, Benveniste EN, Nozell SE (2013) NF-κB induced IL-6 ensures STAT3 activation and tumor aggressiveness in glioblastoma. PLoS One 8(11):e78728. doi: 10.1371/journal.pone.0078728 PubMedCentralPubMedGoogle Scholar
  84. 84.
    Decker T, Kovarik P (2000) Serine phosphorylation of STATs. Oncogene 19:2628–2637PubMedGoogle Scholar
  85. 85.
    Stehmeier P, Muller S (2009) Phospho-regulated SUMO interaction modules connect the SUMO system to CK2 signaling. Mol Cell 33(3):400–409PubMedGoogle Scholar
  86. 86.
    Timofeeva OA, Plisov S, Evseev AA, Peng S, Jose-Kampfner M, Lovvorn HN, Dome JS, Perantoni AO (2006) Serine-phosphorylated STAT1 is a prosurvival factor in Wilms’ tumor pathogenesis. Oncogene 25(58):7555–7564PubMedGoogle Scholar
  87. 87.
    Carter-Su C, Argetsinger LS (2011) JAKs, Stats, and CK2? Blood 118(1):5–6. doi: 10.1182/blood-2011-05-352542, 118/1/5[pii]PubMedGoogle Scholar
  88. 88.
    Aparicio-Siegmund S, Sommer J, Monhasery N, Schwanbeck R, Keil E, Finkenstadt D, Pfeffer K, Rose-John S, Scheller J, Garbers C (2014) Inhibition of protein kinase II (CK2) prevents induced signal transducer and activator of transcription (STAT) 1/3 and constitutive STAT3 activation. Oncotarget 5(8):2131–2148PubMedCentralPubMedGoogle Scholar
  89. 89.
    Wagner KU, Schmidt JW (2011) The two faces of Janus kinases and their respective STATs in mammary gland development and cancer. J Carcinog 10:32. doi: 10.4103/1477-3163.90677 PubMedCentralPubMedGoogle Scholar
  90. 90.
    Berishaj M, Gao SP, Ahmed S, Leslie K, Al-Ahmadie H, Gerald WL, Bornmann W, Bromberg JF (2007) Stat3 is tyrosine-phosphorylated through the interleukin-6/glycoprotein 130/Janus kinase pathway in breast cancer. Breast Cancer Res 9(3):32. doi: 10.1186/bcr1680, bcr1680 [pii]Google Scholar
  91. 91.
    Pedranzini L, Dechow T, Berishaj M, Comenzo R, Zhou P, Azare J, Bornmann W, Bromberg J (2006) Pyridone 6, a pan-janus-activated kinase inhibitor, induces growth inhibition of multiple myeloma cells. Cancer Res 66(19):9714–9721PubMedGoogle Scholar
  92. 92.
    Sansone P, Bromberg J (2012) Targeting the interleukin-6/Jak/Stat pathway in human malignancies. J Clin Oncol 30(9):1005–1014. doi: 10.1200/JCO.2010.31.8907 PubMedCentralPubMedGoogle Scholar
  93. 93.
    Sansone P, Bromberg J (2011) Environment, inflammation, and cancer. Curr Opin Genet Dev 21(1):80–85. doi: 10.1016/j.gde.2010.11.001, S0959-437X(10)00195-4 [pii]PubMedGoogle Scholar
  94. 94.
    Chen Y, Wang J, Wang X, Liu X, Li H, Lv Q, Zhu J, Wei B, Tang Y (2013) STAT3, a poor survival predicator, is associated with lymph node metastasis from breast cancer. J Breast Cancer 16(1):40–49. doi: 10.4048/jbc.2013.16.1.40 PubMedCentralPubMedGoogle Scholar
  95. 95.
    Chang Q, Bournazou E, Sansone P, Berishaj M, Gao SP, Daly L, Wels J, Theilen T, Granitto S, Zhang X, Cotari J, Alpaugh ML, de Stanchina E, Manova K, Li M, Bonafe M, Ceccarelli C, Taffurelli M, Santini D, Altan-Bonnet G, Kaplan R, Norton L, Nishimoto N, Huszar D, Lyden D, Bromberg J (2013) The IL-6/JAK/Stat3 feed-forward loop drives tumorigenesis and metastasis. Neoplasia 15(7):848–862PubMedCentralPubMedGoogle Scholar
  96. 96.
    Wegrzyn J, Potla R, Chwae YJ, Sepuri NB, Zhang Q, Koeck T, Derecka M, Szczepanek K, Szelag M, Gornicka A, Moh A, Moghaddas S, Chen Q, Bobbili S, Cichy J, Dulak J, Baker DP, Wolfman A, Stuehr D, Hassan MO, Fu XY, Avadhani N, Drake JI, Fawcett P, Lesnefsky EJ, Larner AC (2009) Function of mitochondrial Stat3 in cellular respiration. Science 323(5915):793–797PubMedCentralPubMedGoogle Scholar
  97. 97.
    Gough DJ, Corlett A, Schlessinger K, Wegrzyn J, Larner AC, Levy DE (2009) Mitochondrial STAT3 supports Ras-dependent oncogenic transformation. Science 324(5935):1713–1716PubMedCentralPubMedGoogle Scholar
  98. 98.
    Zhang Q, Raje V, Yakovlev VA, Yacoub A, Szczepanek K, Meier J, Derecka M, Chen Q, Hu Y, Sisler J, Hamed H, Lesnefsky EJ, Valerie K, Dent P, Larner AC (2013) Mitochondrial localized Stat3 promotes breast cancer growth via phosphorylation of serine 727. J Biol Chem 288(43):31280–31288. doi: 10.1074/jbc.M113.505057 PubMedCentralPubMedGoogle Scholar
  99. 99.
    Knupfer H, Preiss R (2007) Significance of interleukin-6 (IL-6) in breast cancer (review). Breast Cancer Res Treat 102(2):129–135. doi: 10.1007/s10549-006-9328-3 PubMedGoogle Scholar
  100. 100.
    Drygin D, Ho CB, Omori M, Bliesath J, Proffitt C, Rice R, Siddiqui-Jain A, O’Brien S, Padgett C, Lim JK, Anderes K, Rice WG, Ryckman D (2011) Protein kinase CK2 modulates IL-6 expression in inflammatory breast cancer. Biochem Biophys Res Commun 415(1):163–167. doi: 10.1016/j.bbrc.2011.10.046 PubMedGoogle Scholar
  101. 101.
    Brantley EC, Nabors LB, Gillespie GY, Choi Y-H, Palmer C, Harrison K, Roraty K, Benveniste EN (2008) Loss of PIAS3 expression in glioblastoma multiforme tumors: Implications for STAT-3 activation and gene expression. Clin Cancer Res 14(15):4694–4704PubMedGoogle Scholar
  102. 102.
    Lo HW, Cao X, Zhu H, Ali-Osman F (2008) Constitutively activated STAT3 frequently coexpresses with epidermal growth factor receptor in high-grade gliomas and targeting STAT3 sensitizes them to Iressa and alkylators. Clin Cancer Res 14(19):6042–6054PubMedCentralPubMedGoogle Scholar
  103. 103.
    McFarland BC, Ma JY, Langford CP, Gillespie GY, Yu H, Zheng Y, Nozell SE, Huszar D, Benveniste EN (2011) Therapeutic potential of AZD1480 for the treatment of human glioblastoma. Mol Cancer Ther 10(12):2384–2393. doi: 10.1158/1535-7163.MCT-11-0480 PubMedCentralPubMedGoogle Scholar
  104. 104.
    Veeriah S, Brennan C, Meng S, Singh B, Fagin JA, Solit DB, Paty PB, Rohle D, Vivanco I, Chmielecki J, Pao W, Ladanyi M, Gerald WL, Liau L, Cloughesy TC, Mischel PS, Sander C, Taylor B, Schultz N, Major J, Heguy A, Fang F, Mellinghoff IK, Chan TA (2009) The tyrosine phosphatase PTPRD is a tumor suppressor that is frequently inactivated and mutated in glioblastoma and other human cancers. Proc Natl Acad Sci U S A 106(23):9435–9440PubMedCentralPubMedGoogle Scholar
  105. 105.
    Ortiz B, Fabius AW, Wu WH, Pedraza A, Brennan CW, Schultz N, Pitter KL, Bromberg JF, Huse JT, Holland EC, Chan TA (2014) Loss of the tyrosine phosphatase PTPRD leads to aberrant STAT3 activation and promotes gliomagenesis. Proc Natl Acad Sci U S A 111(22):8149–8154. doi: 10.1073/pnas.1401952111 PubMedCentralPubMedGoogle Scholar
  106. 106.
    Sherry MM, Reeves A, Wu JK, Cochran BH (2009) STAT3 is required for proliferation and maintenance of multipotency in glioblastoma stem cells. Stem Cells 27(10):2383–2392PubMedGoogle Scholar
  107. 107.
    Wang H, Lathia JD, Wu Q, Wang J, Li Z, Heddleston JM, Eyler CE, Elderbroom J, Gallagher J, Schuschu J, Macswords J, Cao Y, McLendon RE, Wang XF, Hjelmeland AB, Rich JN (2009) Targeting interleukin 6 signaling suppresses glioma stem cell survival and tumor growth. Stem Cells 27(10):2393–2404PubMedCentralPubMedGoogle Scholar
  108. 108.
    Cao Y, Lathia JD, Eyler CE, Wu Q, Li Z, Wang H, McLendon RE, Hjelmeland AB, Rich JN (2010) Erythropoietin receptor signaling through STAT3 is required for glioma stem cell maintenance. Genes Cancer 1(1):50–61. doi: 10.1177/1947601909356352 PubMedCentralPubMedGoogle Scholar
  109. 109.
    Guryanova OA, Wu Q, Cheng L, Lathia JD, Huang Z, Yang J, Macswords J, Eyler CE, McLendon RE, Heddleston JM, Shou W, Hambardzumyan D, Lee J, Hjelmeland AB, Sloan AE, Bredel M, Stark GR, Rich JN, Bao S (2011) Nonreceptor tyrosine kinase BMX maintains self-renewal and tumorigenic potential of glioblastoma stem cells by activating STAT3. Cancer Cell 19(4):498–511. doi: 10.1016/j.ccr.2011.03.004, S1535-6108(11)00093-6[pii]PubMedCentralPubMedGoogle Scholar
  110. 110.
    Nitta RT, Gholamin S, Feroze AH, Agarwal M, Cheshier SH, Mitra SS, Li G (2014) Casein kinase 2[alpha] regulates glioblastoma brain tumor-initiating cell growth through the [beta]-catenin pathway. Oncogene. doi: 10.1038/onc.2014.299:1-12 PubMedGoogle Scholar
  111. 111.
    Agarwal M, Nitta R, Li G (2014) Casein kinase 2: A novel player in glioblastoma therapy and cancer stem cells. J Mol Genet Med 8(1):1–6. doi: 10.4172/1747-0862.1000094 Google Scholar
  112. 112.
    Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD, Misra A, Nigro JM, Colman H, Soroceanu L, Williams PM, Modrusan Z, Feuerstein BG, Aldape K (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9:157–173PubMedGoogle Scholar
  113. 113.
    Halliday J, Helmy K, Pattwell SS, Pitter KL, LaPlant Q, Ozawa T, Holland EC (2014) In vivo radiation response of proneural glioma characterized by protective p53 transcriptional program and proneural-mesenchymal shift. Proc Natl Acad Sci U S A 111(14):5248–5253. doi: 10.1073/pnas.1321014111 PubMedCentralPubMedGoogle Scholar
  114. 114.
    Carro MS, Lim WK, Alvarez MJ, Bollo RJ, Zhao X, Snyder EY, Sulman EP, Anne SL, Doetsch F, Colman H, Lasorella A, Aldape K, Califano A, Iavarone A (2010) The transcriptional network for mesenchymal transformation of brain tumours. Nature 463(7279):318–325PubMedCentralPubMedGoogle Scholar
  115. 115.
    He K, Qi Q, Chan CB, Xiao G, Liu X, Tucker-Burden C, Wang L, Mao H, Lu X, McDonald FE, Luo H, Fan QW, Weiss WA, Sun SY, Brat DJ, Ye K (2013) Blockade of glioma proliferation through allosteric inhibition of JAK2. Sci Signal 6(283):ra55, 10.1126/scisignal.2003900PubMedGoogle Scholar
  116. 116.
    Joughin BA, Naegle KM, Huang PH, Yaffe MB, Lauffenburger DA, White FM (2009) An integrated comparative phosphoproteomic and bioinformatic approach reveals a novel class of MPM-2 motifs upregulated in EGFRvIII-expressing glioblastoma cells. Mol Biosyst 5(1):59–67PubMedCentralPubMedGoogle Scholar
  117. 117.
    Gadji M, Crous AM, Fortin D, Krcek J, Torchia M, Mai S, Drouin R, Klonisch T (2009) EGF receptor inhibitors in the treatment of glioblastoma multiform: old clinical allies and newly emerging therapeutic concepts. Eur J Pharmacol 625(1–3):23–30. doi: 10.1016/j.ejphar.2009.10.010 PubMedGoogle Scholar
  118. 118.
    Ji H, Lu Z (2013) The role of protein kinase CK2 in glioblastoma development. Clin Cancer Res 6335–6337, 10.1158/1078-0432.CCR-13-2478Google Scholar
  119. 119.
    Mandal T, Bhowmik A, Chatterjee A, Chatterjee U, Chatterjee S, Ghosh MK (2014) Reduced phosphorylation of Stat3 at Ser-727 mediated by casein kinase 2—Protein phosphatase 2A enhances Stat3 Tyr-705 induced tumorigenic potential of glioma cells. Cell Signal 26(8):1725–1734. doi: 10.1016/j.cellsig.2014.04.003 PubMedGoogle Scholar
  120. 120.
    Levine RL, Pardanani A, Tefferi A, Gilliland DG (2007) Role of JAK2 in the pathogenesis and therapy of myeloproliferative disorders. Nat Rev Cancer 7(9):673–683. doi: 10.1038/nrc2210, nrc2210 [pii]PubMedGoogle Scholar
  121. 121.
    Geron I, Abrahamsson AE, Barroga CF, Kavalerchik E, Gotlib J, Hood JD, Durocher J, Mak CC, Noronha G, Soll RM, Tefferi A, Kaushansky K, Jamieson CH (2008) Selective inhibition of JAK2-driven erythroid differentiation of polycythemia vera progenitors. Cancer Cell 13(4):321–330PubMedGoogle Scholar
  122. 122.
    Chen PH, Chien FC, Lee SP, Chan WE, Lin IH, Liu CS, Lee FJ, Lai JS, Chen P, Yang-Yen HF, Yen JJ (2012) Identification of a novel function of the clathrin-coated structure at the plasma membrane in facilitating GM-CSF receptor-mediated activation of JAK2. Cell Cycle 11(19):3611–3626. doi: 10.4161/cc.21920 PubMedCentralPubMedGoogle Scholar
  123. 123.
    Haura EB, Zheng Z, Song L, Cantor A, Bepler G (2005) Activated epidermal growth factor receptor-Stat-3 signaling promotes tumor survival in vivo in non-small cell lung cancer. Clin Cancer Res 11(23):8288–8294PubMedGoogle Scholar
  124. 124.
    Alvarez JV, Greulich H, Sellers WR, Meyerson M, Frank DA (2006) Signal transducer and activator of transcription 3 is required for the oncogenic effects of non-small-cell lung cancer-associated mutations of the epidermal growth factor receptor. Cancer Res 66(6):3162–3168PubMedGoogle Scholar
  125. 125.
    Gao SP, Mark KG, Leslie K, Pao W, Motoi N, Gerald WL, Travis WD, Bornmann W, Veach D, Clarkson B, Bromberg JF (2007) Mutations in the EGFR kinase domain mediate STAT3 activation via IL-6 production in human lung adenocarcinomas. J Clin Invest 117(12):3846–3856PubMedCentralPubMedGoogle Scholar
  126. 126.
    Lin YC, Hung MS, Lin CK, Li JM, Lee KD, Li YC, Chen MF, Chen JK, Yang CT (2011) CK2 inhibitors enhance the radiosensitivity of human non-small cell lung cancer cells through inhibition of stat3 activation. Cancer Biother Radiopharm 26(3):381–388. doi: 10.1089/cbr.2010.0917 PubMedGoogle Scholar
  127. 127.
    Koskela HL, Eldfors S, Ellonen P, van Adrichem AJ, Kuusanmaki H, Andersson EI, Lagstrom S, Clemente MJ, Olson T, Jalkanen SE, Majumder MM, Almusa H, Edgren H, Lepisto M, Mattila P, Guinta K, Koistinen P, Kuittinen T, Penttinen K, Parsons A, Knowles J, Saarela J, Wennerberg K, Kallioniemi O, Porkka K, Loughran TP Jr, Heckman CA, Maciejewski JP, Mustjoki S (2012) Somatic STAT3 mutations in large granular lymphocytic leukemia. N Engl J Med 366(20):1905–1913. doi: 10.1056/NEJMoa1114885 PubMedCentralPubMedGoogle Scholar
  128. 128.
    Lee H, Herrmann A, Deng JH, Kujawski M, Niu G, Li Z, Forman S, Jove R, Pardoll DM, Yu H (2009) Persistently activated Stat3 maintains constitutive NF-kappaB activity in tumors. Cancer Cell 15(4):283–293. doi: 10.1016/j.ccr.2009.02.015 PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Etty N. Benveniste
    • 1
    Email author
  • G. Kenneth Gray
    • 2
  • Braden C. McFarland
    • 1
  1. 1.Department of Cell, Developmental and Integrative BiologyUniversity of Alabama at BirminghamBirminghamUSA
  2. 2.PhD Program in Biological and Biomedical SciencesHarvard UniversityBostonUSA

Personalised recommendations