Advertisement

Yeast Asf1 Protein as Modulator of Protein Kinase CK2 Activity

  • Andrea BaierEmail author
  • Ewa Alikowska
  • Ryszard Szyszka
Chapter
Part of the Advances in Biochemistry in Health and Disease book series (ABHD, volume 12)

Abstract

Natural modulators of protein kinase CK2 activity might be divided into two groups. Substances of the first one, polycations, like polyamines and polylysine are able to stimulate enzyme activity. On the other hand, compounds like heparin (polyanions) have inhibitory properties towards CK2 activity. The sequence of Asf1 possesses five potential phosphorylation sites for CK2, but it seems that it does not underlie phosphorylation. Yeast Asf1 amino acid sequence contains a characteristic acidic fragment at its C-terminus. Such a sequence, called pseudosubstrate region, of regulatory subunits is present in several protein kinases, like PKA and PKG, and can be also found in the regulatory subunit of CK2. Experimental data suppose a modulating effect of Asf1 towards protein kinase CK2 in a different manner when comparing the influence on each catalytic subunits itself as well as the corresponding holoenzymes.

Keywords

Protein kinase CK2 Autoinhibitory region Regulation Asf1 Yeast 

References

  1. 1.
    Pinna LA (2002) Protein kinase CK2: a challenge to canons. J Cell Sci 115:3873–3878CrossRefPubMedGoogle Scholar
  2. 2.
    Litchfield DW (2003) Protein kinase CK2: structure, regulation and role in cellular decisions of life and death. Biochem J 369:1–15CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Glover CV (1998) On the physiological role of the casein kinase II in Saccharomyces cerevisiae. Prog Nucleic Acid Res Mol Biol 59:95–133CrossRefPubMedGoogle Scholar
  4. 4.
    Xu X, Toselli PA, Russel LD, Seldin DC (1999) Globozoospermia in mice lacking the casein kinase II alpha’ catalytic subunit. Nat Genet 23:118–123CrossRefPubMedGoogle Scholar
  5. 5.
    Lou DY, Dominguez I, Toselli P, Landesman-Bollag E, O’Brien C, Seldin DC (2008) The alpha catalytic subunit of protein kinase CK2 is required for mouse embryonic development. Mol Cell Biol 28:131–139CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Meggio F, Pinna LA (2003) One-thousand-and-one substrates of protein kinase CK2? FASEB J 17:349–368CrossRefPubMedGoogle Scholar
  7. 7.
    Bosc DG, Luscher B, Litchfield DW (1999) Expression and regulation of protein kinase CK2 during the cell cycle. Mol Cell Biochem 191:213–222CrossRefPubMedGoogle Scholar
  8. 8.
    Martel V, Filhol O, Nueda A, Gerber D, Beintez MJ, Cochet C (2001) Visualization and molecular analysis of nuclear import of protein kinase CK2 subunits in living cells. Mol Cell Biochem 227:81–90CrossRefPubMedGoogle Scholar
  9. 9.
    Bosc DG, Slonimski E, Sichler C, Litchfield DW (1995) Phosphorylation of casein kinase II by p34cdc2: identification of phosphorylation sites using phosphorylation site mutants in vitro. J Biol Chem 270:25872–25878CrossRefPubMedGoogle Scholar
  10. 10.
    Paleń E, Traugh J (1991) Phosphorylation of casein kinase II. Biochemistry 30:5586–6690CrossRefPubMedGoogle Scholar
  11. 11.
    Messenger MM, Saulnier RB, Gilchrist AD, Diamond P, Gorbsky GJ, Litchfield DW (2002) Interactions between protein kinase CK2 and Pin-1: evidence for phosphorylation-dependent interactions. J Biol Chem 275:14295–14306Google Scholar
  12. 12.
    Heriche JK, Chambaz EM (1999) Protein kinase CK2alpha is a target is a target for Abl and Brc-Abl tyrosine kinases. Oncogene 17:13–18CrossRefGoogle Scholar
  13. 13.
    Laszlo G, Litchfield DW (2008) The emerging CK2 interactome: insights into the regulation and functions of CK2. Mol Cell Biochem 316:8–14Google Scholar
  14. 14.
    Olsten M, Litchfield DW (2004) Order or chaos? An evaluation of the regulation of protein kinase CK2. Biochem Cell Biol 82:681–693CrossRefPubMedGoogle Scholar
  15. 15.
    Li D, Dobrowolska G, Krebs E (1996) The physical association of casein kinase 2 with nucleolin. J Biol Chem 271:15662–15668CrossRefPubMedGoogle Scholar
  16. 16.
    Li D, Meier T, Dobrowolska G, Krebs E (1997) Specific interaction between casein kinase 2 and the nucleolar protein Nopp140. J Biol Chem 272:3373–3379Google Scholar
  17. 17.
    Skjerpen CS, Nilsen T, Wesche J, Olsens S (2002) Binding of FGF-1 variants to protein kinase CK2 correlates with mitogenicity. EMBO J 21:4058–4069CrossRefPubMedGoogle Scholar
  18. 18.
    Miyata Y, Nishida E (2005) CK2 binds, phosphorylates, and regulates its pivotal substrate Cdc37, an Hsp90-cochaperone. Mol Cell Biochem 274:171–179CrossRefPubMedGoogle Scholar
  19. 19.
    Olsen BB, Jessen V, Hojrup P, Issinger O-G, Boldyreff B (2003) Protein kinase CK2 phosphorylates the Fas-associated factor FAF1 in vivo and influences its transport into the nucleus. FEBS Lett 546:218–222CrossRefPubMedGoogle Scholar
  20. 20.
    Faust M, Schuster N, Montenarch M (1999) Specific binding of protein kinase CK2 catalytic subunits to tubulin. FEBS Lett 462:51–62CrossRefPubMedGoogle Scholar
  21. 21.
    Olsten ME, Canton DA, Zhang C, Walton PA, Litchfiels DW (2004) The Pleckstrin homology domain of CK2 interacting protein-1 is required for interactions and recruitment of protein kinase CK2 to the plasma membrane. J Biol Chem 279:42114–42127CrossRefPubMedGoogle Scholar
  22. 22.
    Zhou XZ, Lu PJ, Wulf G, Lu KP (1999) Phosphorylation-dependent prolyl isomerization: a novel signaling regulatory mechanism. Cell Mol Life Sci 56:788–806CrossRefPubMedGoogle Scholar
  23. 23.
    Heriche JK, Lebrin F, Rabilloud T, Leroy D, Chambaz EM, Goldberg Y (1997) Regulation of protein phosphatase 2A by direct interaction with casein kinase 2α. Science 276:952–955CrossRefPubMedGoogle Scholar
  24. 24.
    Szyszka R. (2005) Kinaza białkowa CK2—oddziaływania białko-białko i ich konsekwencje. Na pograniczu chemii i biologii. Tom XII, 143–168.Google Scholar
  25. 25.
    Bosc DG, Graham KC, Saulnier RB, Zhang C, Prober D, Gietz RD, Litchfield DW (2000) Identification and characterization of CKIP-1, a novel pleckstrin homology domain-containing protein that interacts with protein kinase CK2. J Biol Chem 275:14295–14306CrossRefPubMedGoogle Scholar
  26. 26.
    Faust M, Montenarch M (2002) Subcellular localization of protein kinase CK2. A key to its function? Cell Tissue Res 301:329–340CrossRefGoogle Scholar
  27. 27.
    Jain N, Mahendran R, Philip R, Guy GR, Tan YH, Cao X (1996) Casein kinase II associates with Egr-1 and acts as a negative modulator of its DNA binding and transcription activities in NIH 3 T3 cells. J Biol Chem 271:13530–13536CrossRefPubMedGoogle Scholar
  28. 28.
    Roher N, Miro F, Boldyreff B, Llorens F, Plana M, Issinger IG, Itarte E (2001) The C-terminal domain of human grp94 protects the catalytic subunit of protein kinase CK2 (CK2α) against thermal aggregation. Eur J Biochem 268:429–436CrossRefPubMedGoogle Scholar
  29. 29.
    Rekha N, Srinivasan N (2003) Structural basis of regulation and substrate specificity of protein kinase CK2 deduced from the modeling of protein-protein interactions. BMC Struct Biol 3:4CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Guerra B, Boldyreff B, Sarno S, Cesaro L, Issinger O-G, Pinna LA (1999) CK2: a protein kinase in need of control. Pharmacol Ther 82:303–313CrossRefPubMedGoogle Scholar
  31. 31.
    Wirkner U, Voss H, Lichter P, Pyerin W (1994) Human protein kinase CK2 genes. Cell Mol Biol Res 40:489–499PubMedGoogle Scholar
  32. 32.
    Bodenbach L, Fauss J, Robitzki A, Krehan A, Lorenz P, Lozeman FJ, Pyerin W (1994) Recombinant human casein kinase II. A study with the complete set of subunits (alpha, alpha’ and beta), site-directed autophosphorylation mutants and a bicistronically expressed holoenzyme. Eur J Biochem 220:263–273CrossRefPubMedGoogle Scholar
  33. 33.
    Sajnaga E, Kubiński K, Szyszka R (2008) Catalytic activity of mutants of yeast protein kinase CK2α. Acta Biochim Pol 55:767–776PubMedGoogle Scholar
  34. 34.
    Niefind K, Guerra B, Ermakowa I, Issinger OG (2001) Crystal structure of human protein kinase CK2: insights into basic properties of the CK2 holoenzyme. EMBO J 20:5320–5331CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Rao ST, Rossmann MG (1973) Comparison of super-secondary structures in proteins. J Mol Biol 76:241–256CrossRefPubMedGoogle Scholar
  36. 36.
    Sarno S, Vaglio P, Meggio F, Issinger O-G, Pinna LA (1996) Protein kinase CK2 mutants defective in substance recognition. Purification and kinetic analysis. J Biol Chem 271:10595–10601CrossRefPubMedGoogle Scholar
  37. 37.
    Sarno S, Marin O, Ghisellini P, Meggio F, Pinna LA (1998) Biochemical evidence that the N-terminal segments of the alpha subunit and the beta subunit play interchangeable roles in the activation of protein kinase CK2. FEBS Lett 44:29–33CrossRefGoogle Scholar
  38. 38.
    Vaglio P, Sarno S, Marin O, Meggio F, Issinger O-G, Pinna LA (1996) Mapping the residues of protein kinase CK2 alpha subunit responsible for responsiveness to polyanionic inhibitors. FEBS Lett 380:25–28CrossRefPubMedGoogle Scholar
  39. 39.
    Miyata Y, Yahara I (1995) Interaction between casein kinase II and the 90-kDa stress protein, HSP90. Biochemistry 34:8123–8129CrossRefPubMedGoogle Scholar
  40. 40.
    Li D, Dobrowolska G, Krebs EG (1999) Identification of proteins that associate with protein kinase CK2. Mol Cell Biochem 191:223–228CrossRefPubMedGoogle Scholar
  41. 41.
    Donella-Deana A, Cesaro L, Sarno S, Ruzzene M, Brunati AM, Marin O, Vilk G, Dohery-Kirby A, Lajoie G, Litchfield DW, Pinna LA (2003) Tyrosine phosphorylation of protein kinase CK2 by Src-related tyrosine kinases correlates with increased catalytic activity. Biochem J 372:841–849CrossRefPubMedCentralPubMedGoogle Scholar
  42. 42.
    Vilk G, Saulnier RB, St PR, Litchfield DW (1999) Inducible expression of protein kinase CK2 in mammalian cells. Evidence for functional specialization of CK2 isoforms. J Biol Chem 274:14406–14414CrossRefPubMedGoogle Scholar
  43. 43.
    Boldyreff B, James P, Staudenmann W, Issinger O-G (1993) Ser2 is the autophosphorylation site in the beta subunit from bicistronically expressed human casein kinase-2 and from native rat liver casein kinase-2 beta. Eur J Biochem 218:515–521CrossRefPubMedGoogle Scholar
  44. 44.
    Allende JE, Allende CC (1995) Protein kinase CK2: an enzyme with multiple substrates and a puzzling regulation. FASEB J 9:313–323PubMedGoogle Scholar
  45. 45.
    Leroy D, Heriche JK, Filhol O, Chambaz EM, Cochet C (1997) Binding of polyamines to an autonomous domain of the regulatory subunit of protein kinase CK2 induces a conformational change in holoenzyme. A proposed role for kinase stimulation. J Biol Chem 272:20820–20827CrossRefPubMedGoogle Scholar
  46. 46.
    Soderling TR (1990) Protein kinases. Regulation by autoinhibitory domains. J Biol Chem 265:1823–1826Google Scholar
  47. 47.
    Meggio F, Boldyreff B, Issinger O-G, Pinna LA (1994) Casein kinase 2 down-regulation and activation by polybasic peptides are mediated by acidic residues in the 55–64 region of the beta-subunit. A study with calmodulin as phosphorylatable substrate. Biochemistry 33:4336–4342CrossRefPubMedGoogle Scholar
  48. 48.
    Boldyreff B, Meggio F, Pinna LA, Issinger O-G (1993) Reconstruction of normal and hyperactive forms of casein kinase-2 by variably mutated beta-subunits. Biochemistry 32:12672–12677CrossRefPubMedGoogle Scholar
  49. 49.
    Boldyreff B, Meggio F, Pinna LA, Issinger O-G (1994) Protein kinase CK2 structure-function relationship: effects of the beta subunit on reconstruction and activity. Cell Mol Biol Res 40:391–399PubMedGoogle Scholar
  50. 50.
    Hinrichs MV, Gatica M, Allende CC, Allende JE (1995) Site-direct mutants of the beta subunit of protein kinase CK2 demonstrate the important role of Pro-58. FEBS Lett 368:211–214CrossRefPubMedGoogle Scholar
  51. 51.
    Yamaki M, Umehara T, Chimura T, Horikoshi M (2001) Cell death with predominant apoptotic features in Saccharomyces cerevisiae mediated by deletion of the histone chaperone ASF1/CIA1. Genes Cells 6:1043–1054CrossRefPubMedGoogle Scholar
  52. 52.
    Hu F, Alcasabas AA, Elledge SJ (2001) Asf1 links Rad53 to control of chromatin assembly. Genes Dev 15:1061–1066CrossRefPubMedCentralPubMedGoogle Scholar
  53. 53.
    Munakata T, Adachi N, Yokoyama N, Kuzuhara T, Horikoshi M (2000) A human homologue of yeast anti-silencing factor has histone chaperone activity. Genes Cells 5:221–233CrossRefPubMedGoogle Scholar
  54. 54.
    Sillje HHW, Nigg EA (2001) Identification of human Asf1 chromatin assembly factors as substrates of Tousled-like kinases. Curr Biol 11:1068–1073CrossRefPubMedGoogle Scholar
  55. 55.
    Umehara T, Chimura T, Ichikawa N, Horikoshi M (2002) Polyanionic stretch-deleted histone chaperone cia1/Asf1 is functional both in vivo and in vitro. Genes Cells 7:59–73CrossRefPubMedGoogle Scholar
  56. 56.
    Riera M, Peracchia G, de Nadal E, Ariño J, Pages M (2001) Maize protein kinase CK2: regulation and functionality of three beta regulatory subunits. Plant J 25:365–374CrossRefPubMedGoogle Scholar
  57. 57.
    Olsen BB, Rasmussen T, Niefind K, Issinger O-G (2008) Biochemical characterization of CK2α and α’ paralogues and their derived holoenzymes: evidence for the existence of a heteroterameric CK2α’-holoenzyme forming trimeric complexes. Mol Cell Biochem 316:37–47CrossRefPubMedGoogle Scholar
  58. 58.
    Janeczko M, Orzeszko A, Kazimierczuk Z, Szyszka R, Baier A (2012) CK2α and CK2α’ subunits differ in their sensitivity to 4,5,6,7-tetrabromo- and 4,5,6,7-tetraiodo-1H-benzimidazole derivatives. Eur J Med Chem 47:345–350CrossRefPubMedGoogle Scholar
  59. 59.
    Jach M, Kubiński K, Zieliński R, Sajnaga E, Szyszka R (2005) Asf1—yeast inductor of apoptosis inhibits CK2 activity in vitro. Cell Mol Biol Lett 10(Suppl 2):121–122Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Molecular Biology, Faculty of Biotechnology and Environmental Sciences, Institute of BiotechnologyThe John Paul II Catholic University of LublinLublinPoland
  2. 2.Department of Molecular BiologyThe John Paul II Catholic University of Lublin Institute of BiotechnologyLublinPoland

Personalised recommendations