Skip to main content

Single Band Effective Mass Equation and Envolvent Functions

  • Chapter
  • First Online:
Photon Absorption Models in Nanostructured Semiconductor Solar Cells and Devices

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

  • 937 Accesses

Abstract

The single-band effective mass Schrödinger equation to calculate the envelope functions is described and its grounds are shown. These envelope functions are used to multiply periodic part of the Bloch functions to obtain approximate eigenfunctions of the Hamiltonian of a nanostructured semiconductor. The Bloch functions, which are the product of a periodic function and a plane wave, constitute the exact solution of a homogeneous semiconductor; they are taken as a basis to represent the nanostructured Hamiltonian. The conditions that make possible the use of this single band effective mass Schrödinger equation are explained. The method is applied to the calculation of the energy spectrum of quantum dots for wavefunctions belonging to the conduction band. A box-shaped model of the quantum dots is adopted for this task. The results show the existence of energy levels detached from this band as well as eigenfunctions bound totally or partially around the quantum dot. The absorption coefficients of photons in the nanostructured semiconductor, which is our ultimate goal, are calculated. The case of spherical quantum dots is also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The division by \( \varOmega_{cell} \) is necessary, among other reasons, to keep the dimensionality.

  2. 2.

    Note that, in the non-relativistic limit, the energies in the Schrödinger equations do not have a defined energy origin. However, the origin for E and U L have to be the same and U must be considered as a potential energy that is added to U L .

  3. 3.

    Some authors, and more frequently those working in the k·p method, call Bloch functions to their periodic part, \( u_{{v,\varvec{k}}} (\varvec{r}) \).

  4. 4.

    In this equation, the imaginary unit i is conserved attached to the gradient sign \( \nabla \). This is because \( i\nabla \) is Hermitical. The advantage of using Hermitical operators is that \( \left\langle \varphi \right|i\nabla \left| \psi \right\rangle = \int {\varphi^{*} i\nabla \psi d^{3} r} = \int {(i\nabla \varphi )^{*} \psi d^{3} r.} \)

  5. 5.

    Exciton is an electron-hole pair linked by Coulombian attraction. At room temperature excitons are dissociated in a semiconductor. Electron-hole pairs and excitons are often considered synonymous, and is the case in this chapter.

References

  1. Datta S (1989) Quantum phenomena. Molecular series on solid state devices, vol 8. Addison Wesley, Reading

    Google Scholar 

  2. Kaxiras E (2003) Atomic and electronic structure of solids. Cambridge University Press, New York

    Book  Google Scholar 

  3. Messiah A (1960) Mécanique quantique. Dunod, Paris

    Google Scholar 

  4. Luque A, Marti A, Mendes MJ, Tobias I (2008) Light absorption in the near field around surface plasmon polaritons. J Appl Phys 104(11):113118. doi:10.1063/1.3014035

    Article  Google Scholar 

  5. Luque A, Antolín E, Linares PG, Ramiro I, Mellor A, Tobías I, Martí A (2013) Interband optical absorption in quantum well solar cells. Sol Energy Mater Sol Cells 112:20–26. doi:10.1016/j.solmat.2012.12.045

    Article  Google Scholar 

  6. Bastard G (1990) Wave mechanics applied to semiconductor nanostructures. Monographies de Physique. Les Editions de Physique, Paris

    Google Scholar 

  7. Antolín E, Marti A, Farmer CD, Linares PG, Hernández E, Sánchez AM, Ben T, Molina SI, Stanley CR, Luque A (2010) Reducing carrier escape in the InAs/GaAs quantum dot intermediate band solar cell. J Appl Phys 108(6):064513

    Article  Google Scholar 

  8. Martí A, Antolín E, Cánovas E, López N, Luque A, Stanley C, Farmer C, Díaz P, Christofides C, Burhan M (2006) Progress in quantum-dot intermediate band solar cell research. In: Poortmans J, Ossenbrink H, Dunlop E, Helm P (eds) Proceedings of the 21st European photovoltaic solar energy conference. WIP-Renewable Energies, Munich, pp 99–102

    Google Scholar 

  9. Linares PG, Marti A, Antolin E, Farmer CD, Ramiro I, Stanley CR, Luque A (2012) Voltage recovery in intermediate band solar cells. Sol Energy Mater Sol Cells 98:240–244. doi:10.1016/j.solmat.2011.11.015

    Article  Google Scholar 

  10. Luque A, Marti A, Antolín E, Linares PG, Tobias I, Ramiro I (2011) Radiative thermal escape in intermediate band solar cells. AIP Adv 1:022125

    Article  Google Scholar 

  11. Antolín E, Martí A, Luque A (2011) The lead salt quantum dot intermediate band solar cell. Paper presented at the 37th photovoltaic specialists conference, Seattle, pp 001907–12

    Google Scholar 

  12. Linares PG, Marti A, Antolin E, Luque A (2011) III-V compound semiconductor screening for implementing quantum dot intermediate band solar cells. J Appl Phys 109:014313

    Article  Google Scholar 

  13. Popescu V, Bester G, Hanna MC, Norman AG, Zunger A (2008) Theoretical and experimental examination of the intermediate-band concept for strain-balanced (In,Ga)As/Ga(As,P) quantum dot solar cells. Phys Rev B 78:205321

    Article  Google Scholar 

  14. Lazarenkova OL, Balandin AA (2001) Miniband formation in a quantum dot crystal. J Appl Phys 89(10):5509–5515

    Article  Google Scholar 

  15. Shao Q, Balandin AA, Fedoseyev AI, Turowski M (2007) Intermediate-band solar cells based on quantum dot supracrystals. Appl Phys Lett 91(16):163503. doi:10.1063/1.2799172

  16. Luque A, Marti A, Antolin E, Garcia-Linares P (2010) Intraband absorption for normal illumination in quantum dot intermediate band solar cells. Sol Energy Mater Sol Cells 94:2032–2035

    Article  Google Scholar 

  17. Luque A, Marti A, Mellor A, Marron DF, Tobias I, Antolín E (2013) Absorption coefficient for the intraband transitions in quantum dot materials. Prog Photovoltaics 21:658–667. doi:10.1002/pip.1250

  18. Luque A, Mellor A, Tobías I, Antolín E, Linares PG, Ramiro I, Martí A (2013) Virtual-bound, filamentary and layered states in a box-shaped quantum dot of square potential form the exact numerical solution of the effective mass Schrödinger equation. Phys B 413:73–81. doi:10.1016/j.physb.2012.12.047

    Article  Google Scholar 

  19. Bastard G, Ziemelis UO, Delalande C, Voos M, Gossard AC, Wiegmann W (1984) Bound and virtual bound-states in semiconductor quantum wells. Solid State Commun 49(7):671–674

    Article  Google Scholar 

  20. Ferreira R, Bastard G (2006) Unbound states in quantum heterostructures. Nanoscale Res Lett 1(2):120–136. doi:10.1007/s11671-006-9000-1

    Article  Google Scholar 

  21. Fermi E (1932) Quantum theory of radiation. Rev Mod Phys 4(1):0087–0132

    Article  Google Scholar 

  22. Heitler W (1944) The quantum theory of radiation. Oxford University Press, Oxford

    Google Scholar 

  23. Berestetski V, Lifchitz E, Pitayevski L (1972) Théorie quantique relativiste. Mir, Moscou

    Google Scholar 

  24. Luque A, Marti A, Antolín E, Linares PG, Tobías I, Ramiro I, Hernandez E (2011) New Hamiltonian for a better understanding of the quantum dot intermediate band solar cells. Sol Energy Mater Sol Cells 95:2095–2101. doi:10.1016/j.solmat.2011.02.028

    Article  Google Scholar 

  25. Luque A, Marti A, Mellor A, Marron DF, Tobias I, Antolín E (2013) Absorption coefficient for the intraband transitions in quantum dot materials. Prog Photovoltaics 21:658–667. doi:10.1002/pip.1250

    Google Scholar 

  26. Luque A, Martí A, Cuadra L (2001) Thermodynamic consistency of sub-bandgap absorbing solar cell proposals. IEEE Trans Electron Devices 48(9):2118–2124

    Article  Google Scholar 

  27. Phillips J, Kamath K, Zhou X, Chervela N, Bhattacharya P (1997) Photoluminescence and far-infrared absorption in Si-doped self-organized InAs quantum dots. Appl Phys Lett 71(15):2079–2081. doi:10.1063/1.119347

    Article  Google Scholar 

  28. Sauvage S, Boucaud P, Julien FH, Gerard JM, ThierryMieg V (1997) Intraband absorption in n-doped InAs/GaAs quantum dots. Appl Phys Lett 71(19):2785–2787. doi:10.1063/1.120133

    Article  Google Scholar 

  29. Durr CS, Warburton RJ, Karrai K, Kotthaus JP, Medeiros-Ribeiro G, Petroff PM (1998) Interband absorption on self-assembled InAs quantum dots. Phys E 2(1–4):23–27. doi:10.1016/s1386-9477(98)00005-8

    Article  Google Scholar 

  30. Popescu V, Bester G, Zunger A (2009) Strain-induced localized states within the matrix continuum of self-assembled quantum dots. Appl Phys Lett 95(2):023108. doi:10.1063/1.3159875

  31. Pryor C (1998) Eight-band calculations of strained InAs/GaAs quantum dots compared with one-, four-, and six-band approximations. Phys Rev B 57(12):7190–7195

    Article  Google Scholar 

  32. Kato T (1959) Growth properties of solutions of the reduced wave equation with a variable coefficient. Commun Pure Appl Math 12:403–425

    Article  MATH  Google Scholar 

  33. Agmon S (1970) Lower bounds for solutions of the Schrödinger equations. J Anal Math 23:1–25

    Google Scholar 

  34. Luque A, Marti A, Stanley C (2012) Understanding intermediate-band solar cells. Nat Photonics 6(3):146–152. doi:10.1038/nphoton.2012.1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Luque .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Luque, A., Mellor, A.V. (2015). Single Band Effective Mass Equation and Envolvent Functions. In: Photon Absorption Models in Nanostructured Semiconductor Solar Cells and Devices. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-14538-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14538-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14537-2

  • Online ISBN: 978-3-319-14538-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics