Skip to main content

Evolving the Embryos

  • 1182 Accesses

Abstract

The most elegant and probably the most influential experiment in embryology was performed by Aristotle some 2,400 years ago on chick embryos. Aristotle removed the shell from eggs that had been incubated for different periods of time, and carefully described what he saw in successive stages of development: the white spot on the yolk that marks, at the beginning, the position where the embryo is going to appear; the tiny brown lump that begins pulsating at the third day; the protruding bulbs that gradually turn into eyes and brain vesicles; the network of red vessels that descend into the yolk and expand in it like the roots of a tree, and the various membranes that surround the growing chick (Aristotle [384–322 BC] 1965).

Keywords

  • Embryonic Development
  • Body Plan
  • Trace Fossil
  • Cambrian Explosion
  • Optic Vesicle

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-14535-8_6
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-14535-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   199.99
Price excludes VAT (USA)

References

  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2007) Molecular biology of the cell, 5th edn. Garland, New York

    Google Scholar 

  • Aristotle [384-322 BC] (1965) De Generatione Animalium. Translated by Platt A. Clarendon Press, Oxford

    Google Scholar 

  • Barbieri M (2003) The organic codes: an introduction to semantic biology. Cambridge University Press, Cambridge

    Google Scholar 

  • Bateson W (1894) Materials for the study of variation. Macmillan and Co., London

    Google Scholar 

  • Bayascas JR, Castillo E, Saló E (1998) Platyhelminthes have a Hox code differentially activated during regeneration, with genes closely related to those of spiralian protostomes. Dev Genes Evol 208:467–473

    CAS  PubMed  CrossRef  Google Scholar 

  • Bonnet C (1764) Contemplation de la Nature. Marc-Michel Rey, Amsterdam

    Google Scholar 

  • Brasier M, Cowie J, Taylor M (1994) Decision on the Precambrian-Cambrian boundary stratotype. Episodes 17:3–8

    Google Scholar 

  • Carroll SB (1995) Homeotic genes and the evolution of arthropods and chordates. Nature 376:479–485

    CAS  PubMed  CrossRef  Google Scholar 

  • Carroll SB, Grenier JK, Weatherbee SD (2001) From DNA to diversity: molecular genetics and the evolution of animal design. Blackwell, Malden

    Google Scholar 

  • Conway Morris S (1993) The fossil record and the early evolution of the Metazoa. Nature 361:219–225

    CrossRef  Google Scholar 

  • Conway Morris S (1998) The crucible of creation: the Burgess Shale and the rise of animals. Oxford University Press, Oxford

    Google Scholar 

  • Cuvier G (1800–1805) Leçons d’Anatomie Comparée. 5 Volumes. Volumes 1–2 by Duméril, Paris. Volumes 3–5 by Duvernoy, Paris

    Google Scholar 

  • Cuvier G (1812) Researches sur les ossements fossils des quadrupedès. Déterville, Paris

    Google Scholar 

  • Cuvier G (1828) Le règne animal distribué d’apres son organization. Fortin, Paris

    Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection, or preservation of favored races in the struggle for life. Murray, London

    Google Scholar 

  • Delbrück M (1971) Aristotle-totle-totle. In: Monod J, Borek E (eds) Of microbes and life. Columbia University Press, New York

    Google Scholar 

  • Des Marais DJ (1997) Isotopic evolution of the biogeochemical carbon cycle during the Proterozoic eon. Org Geochem 27:185–193

    CAS  CrossRef  Google Scholar 

  • Driesch H (1893) Zur Verlagerung der Blastomeren des Echinideneies. Anat Anz 8:348–357

    Google Scholar 

  • Driesch H (1894) Analytische Theorie der Organischen Entwicklung. W. Engelmann, Leipzig

    CrossRef  Google Scholar 

  • Elder D (1979) An epigenetic code. Differentiation 14:119–122

    CAS  PubMed  CrossRef  Google Scholar 

  • Garcia-Bellido A (1975) A genetic control of wing disc development in Drosophila. In: Cell patterning. Ciba Foundation symposium, 29. Elsevier, Amsterdam, pp 161–178

    Google Scholar 

  • Gehring WJ (1996) The master control gene for morphogenesis and evolution of the eye. Genes Cells 1:11–15

    CAS  PubMed  CrossRef  Google Scholar 

  • Gilbert SF (2006) Developmental biology, 8th edn. Sinauer Associates Inc., Sunderland

    Google Scholar 

  • Glaessner MF (1983) The dawn of animal life: a biohistorical study. Cambridge University Press, Cambridge

    Google Scholar 

  • Goethe JW (1790) Versuch der Metamorphose der Pflanzen zu Erklären. C. W. Ettinger, Gotha

    Google Scholar 

  • Gould SJ (1989) Wonderful life: the Burgess Shale and the nature of history. Norton/Hutchinson Radius, London

    Google Scholar 

  • Halder G, Callaerts P, Gehring WJ (1995) Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. Science 267:1788–1792

    CAS  PubMed  CrossRef  Google Scholar 

  • Harrison RG (1918) Experiments on the development of the forelimb of Amblystoma, a self-differentiating equipotential system. J Exp Zool 25:413–461

    CrossRef  Google Scholar 

  • Hennig W (1966) Phylogenetic systematic. University of Illinois Press, Urbana

    Google Scholar 

  • Hunt P, Whiting J, Nonchev S, Sham M-H, Marshall H, Graham A, Cook M, Alleman R, Rigby PW, Gulisano M (1991) The branchial Hox code and its implications for gene regulation, patterning of the nervous system and head evolution. Development 2:63–77

    PubMed  Google Scholar 

  • Kelly SJ (1977) Studies of the developmental potential of 4- and 8-cell stage mouse blastomers. J Exp Zool 200:365–376

    CAS  PubMed  CrossRef  Google Scholar 

  • Kessel M, Gruss P (1991) Homeotic tansformation of murine vertebrae and concomitant alteration of Hox codes induced by retinoic acid. Cell 67:89–104

    CAS  PubMed  CrossRef  Google Scholar 

  • Lewis EB (1963) Genes and developmental pathways. Am Zool 3:33–56

    Google Scholar 

  • Lewis EB (1978) A gene complex controlling segmentation in Drosophila. Nature 276:565–570

    CAS  PubMed  CrossRef  Google Scholar 

  • Linnaeus C (1758) Systema Naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis, 10th edn. Laurentius Salvius, Stockholm

    Google Scholar 

  • Malpighi M (1673) De formatione pulli in ovo. Royal Society, London

    Google Scholar 

  • Maynard Smith J (1986) The problems of biology. Oxford University Press, Oxford

    Google Scholar 

  • Mayr E (1963) Animal species and evolution. Harvard University Press, Cambridge, MA

    CrossRef  Google Scholar 

  • Mayr E (1982) The growth of biological thought. Harvard University Press, Cambridge, MA

    Google Scholar 

  • McGinnis W, Levine M, Hafen E et al (1984) A conserved DNA sequence in homeotic genes of the Drosophila Antennapedia and Bithorax complexes. Nature 308:428–433

    CAS  PubMed  CrossRef  Google Scholar 

  • McLachlan J (1994) Medical embryology. Addison-Wesley, Amsterdam/New York

    Google Scholar 

  • Mintz B (1962) Formation of genotypically mosaic embryos. Am Zool 2:432

    Google Scholar 

  • Monod J (1970) Le Hasard et la Necessité. Seuil, Paris. English edition: (1971) Chance and Necessity. A Knopf, New York

    Google Scholar 

  • Murchison RI (1854) Siluria: the history of the oldest known rocks containing organic remains. John Murray, London

    Google Scholar 

  • Owen R (1848) On the archetype and homologies of the vertebrate skeleton. John Van Voorst, London

    Google Scholar 

  • Quiring R, Walldorf U, Kloter U, Gehring WJ (1994) Homology of the eyeless gene of Drosophila to the Small eye gene in mice and Aniridia in humans. Science 265:785–789

    CAS  PubMed  CrossRef  Google Scholar 

  • Raff RA (1996) The shape of life. The University of Chicago Press, Chicago/London

    Google Scholar 

  • Ryan JF, Mazza ME, Pang K, Matus DQ, Baxevanis AD, Martindale MQ, Finnerty JR (2007) Pre-bilaterian origins of the Hox cluster and the Hox code: evidence from the sea anemome Nematostella vectensis. PLoS One 2:e153

    PubMed Central  PubMed  CrossRef  Google Scholar 

  • Saint-Hilaire G (1818) Philosophie anatomique. J-B Baillière, Paris

    Google Scholar 

  • Salvini-Plawen LV, Mayr E (1977) On the evolution of photoreceptors and eyes. In: Hecht MK, Steere WC, Wallace B (eds) Evolutionary biology, vol 10. Plenum, New York, pp 207–263

    CrossRef  Google Scholar 

  • Sander K (1975) Pattern specification in the insect embryo. In: Cell patterning. Ciba Foundation symposium, 29. Elsevier, Amsterdam, pp 241–263

    Google Scholar 

  • Saunders JW Jr (1982) Develpmental biology: patterns, problems, principles. Macmillan, New York

    Google Scholar 

  • Seidel F (1952) Die Entwicklungspotenzen einer isolierten Blastomere des Zweizellenstadium im Säugetierei. Naturwissenschaften 39:355–356

    CrossRef  Google Scholar 

  • Seilacher A (1992) Vendobionta and psammocarallia: lost constructions of Precambrian evolution. Geol Soc Lond J 149:607–613

    CrossRef  Google Scholar 

  • Slack JMW, Holland PWH, Graham CF (1993) The zootype and the phylotypic stage. Nature 361:490–492

    CAS  PubMed  CrossRef  Google Scholar 

  • Spemann H (1901) Über Korrelationen in der Entwicklung des Auges. Verh anat Ges Jena Verslg Bonn 15:61–79

    Google Scholar 

  • Spemann H (1938) Embryonic development and induction. Yale University Press, New Haven

    Google Scholar 

  • Spemann H, Mangold H (1924) Über Induktion von Embryonanlagen durch Implantation artfremder Organisatoren. Ark Micros Anat Entwmech 100:599–638

    Google Scholar 

  • Tarkowski AK (1961) Mouse chimeras developed from fused eggs. Nature 190:857–860

    CAS  PubMed  CrossRef  Google Scholar 

  • Tudge C (2000) The variety of life: a survey and a celebration of all the creatures that have ever lived. Oxford University Press, Oxford/New York

    Google Scholar 

  • von Baer KE (1828) Über Entwickelungsgeschichte der Thiere: Beobachtung und Reflexion. Gebrüder Bornträger, Königsberg

    Google Scholar 

  • Hamburger V (1988) The heritage of experimental embryology: Hans Spemann and the organizer. Oxford University Press, Oxford/New York

    Google Scholar 

  • Nüsslein-Volhard C, Wieschaus E (1980) Mutations affecting segment number and polarity in Drosophila. Nature 287:795–801

    PubMed  CrossRef  Google Scholar 

  • Scott MP, Weiner AJ (1984) Structural relationships among genes that control development: sequence homology between the Antennapedia, Ultrabithorax and fushi tarazu loci in Drosophila. Proc Natl Acad Sci 81:4115–4119

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Barbieri, M. (2015). Evolving the Embryos. In: Code Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-14535-8_6

Download citation