Skip to main content

The First Three Billion Years

  • 1178 Accesses

Abstract

The Cambrian is the geological period whose rocks contain the first fossils that are visible to the naked eye, and the age that came before has been traditionally referred to as the Precambrian. At a visual inspection, the rocks of the Precambrian look totally devoid of traces of past life, but under the microscope some of them have revealed the presence of fossilized microorganisms (Schopf 1993). The Precambrian is therefore the geological age that came before the origin of visible multicellular creatures, and the dating of its rocks by radioactive methods has revealed that it has been an immensely long period.

Keywords

  • Horizontal Gene Transfer
  • Genetic Code
  • Primary Transcript
  • Organic Code
  • Multicellular Life

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-14535-8_5
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-14535-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   199.99
Price excludes VAT (USA)

References

  • Amaral PP, Dinger ME, Mercer TR, Mattick JS (2008) The eukaryotic genome as an RNA machine. Science 319:1787–1789

    CAS  PubMed  CrossRef  Google Scholar 

  • Ambros V, Chen X (2007) The regulation of genes and genomes by small RNAs. Development 134:1635–1641

    CAS  PubMed  CrossRef  Google Scholar 

  • Andersson JO (2005) Lateral gene transfer in eukaryotes. Cell Mol Life Sci 62:1182–1197

    CAS  PubMed  CrossRef  Google Scholar 

  • Barbieri M (2003) The organic codes: an introduction to semantic biology. Cambridge University Press, Cambridge

    Google Scholar 

  • Barghoorn ES, Tyler SM (1965) Microfossils from the Gunflint chert. Science 147:563–577

    CAS  PubMed  CrossRef  Google Scholar 

  • Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Bass BL (2002) RNA editing by adenosine deaminases that act on RNA. Annu Rev Biochem 71:817–846

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Boveri TH (1904) Ergebnisse über die Konstitution der chromatischen Substanz des Zelkerns. Fisher, Jena

    CrossRef  Google Scholar 

  • Brennicke A, Marchfelder A, Binder S (1999) RNA editing. FEMS Microbiol Rev 23(3):297–316

    CAS  PubMed  CrossRef  Google Scholar 

  • Cloud P (1965) The significance of the Guntflint (Precambrian) microflora. Science 148:27–35

    PubMed  CrossRef  Google Scholar 

  • Dagan T, Artzy-Randrup Y, Martin W (2008) Modular networks and cumulative impact of lateral transfer in prokaryote genome evolution. Proc Natl Acad Sci U S A 105:10039–10044

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection, or preservation of favored races in the struggle for life. Murray, London

    Google Scholar 

  • Doolittle WF (1999) Phylogenetic classification and the universal tree. Science 284:2124–2129

    CAS  PubMed  CrossRef  Google Scholar 

  • Doolittle WF, Bapteste E (2007) Pattern pluralism and the tree of life hypothesis. Proc Natl Acad Sci U S A 104:2043–2049

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Dover G, Flavell D (1982) Genome evolution. Oxford University Press, Oxford

    Google Scholar 

  • Gould SJ (2002) The structure of evolutionary theory. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Jacob F, Monod J (1961) Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3:318–356

    CAS  PubMed  CrossRef  Google Scholar 

  • Kalkowsky E (1908) Oolith und Stromatolith im norddeutschen Buntsandstein. Z Dtsch Geol Ges 60:68–125

    Google Scholar 

  • Kandler O (1994) The early diversification of life. In: Bengston S (ed) Early life on earth: nobel symposium no. 84. Columbia University Press, New York, pp 152–160

    Google Scholar 

  • Knoll AH (2003) Life on a young planet: the first three billion years of evolution on earth. Princeton University Press, Princeton

    Google Scholar 

  • Madison-Antenucci S, Grams J, Hajduk SL (2002) Editing machines: the complexities of trypanosome RNA editing. Cell 108:435–438

    CAS  PubMed  CrossRef  Google Scholar 

  • Margulis L (1970) Origin of eucaryotic cells. Yale University Press, New Haven

    Google Scholar 

  • Mattick JS (2004) RNA regulation: a new genetics? Nat Rev Genet 5(4):316–323

    CAS  PubMed  CrossRef  Google Scholar 

  • McClintock B (1951) Chromosome organization and gene expression. Cold Spring Harb Symp Quant Biol 16:13–47

    CAS  PubMed  CrossRef  Google Scholar 

  • McClintock B (1956) Controlling elements and the gene. Cold Spring Harb Symp Quant Biol 21:197–216

    CAS  PubMed  CrossRef  Google Scholar 

  • Mereschowsky C (1910) Theorie der Zwei Pflanzenarten als Grundlage der Symbiogenesis, einer neuen Lehre der Entstehung der Organismen. Biologisches Zentralblatt 30:278–303, 321–347, 353–367

    Google Scholar 

  • Miller RV (1998) Bacterial gene-swapping in nature. Sci Am 278(1):67–71

    CAS  CrossRef  Google Scholar 

  • Morgan TH (1915) The mechanism of Mendelian heredity. Henry Holt, New York

    CrossRef  Google Scholar 

  • Panigrahi AK, Schnaufer A, Ernst NL, Wang B, Carmean N, Salavati R, Stuart K (2003) Identification of novel components of Trypanosoma brucei editosomes. RNA 9:484–492

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Portier P (1918) Les symbiotes. Masson et Cie, Paris

    Google Scholar 

  • Schimper AFW (1883) Uber die Entwickelung der Chlorophyllkörner und Farbkorper. Bot Zeitung 41:105–114

    Google Scholar 

  • Schopf JW (1978) The evolution of the earliest cells. Sci Am 239(3):84–103

    CrossRef  Google Scholar 

  • Schopf JW (1993) Microfossils of the Early Archean Apex chert: new evidence of the antiquity of life. Science 260:640–646

    CAS  PubMed  CrossRef  Google Scholar 

  • Schopf JW (1999) Cradle of life: the discovery of earth’s earliest fossils. Princeton University Press, Princeton

    Google Scholar 

  • Shapiro JA (2011) Evolution: a view from the 21st century. Prentice Hall, New York

    Google Scholar 

  • Sutton WS (1903) The chromosomes in heredity. Biol Bull 4:231–251

    CrossRef  Google Scholar 

  • Tyler SM, Barghoorn ES (1954) Occurrence of structurally preserved plants in Precambrian rocks of the Canadian shield. Science 119:606–608

    CAS  PubMed  CrossRef  Google Scholar 

  • Wallin JE (1927) Symbionticism and the origin of species. Williams and Wilkins, Baltimore

    CrossRef  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    CAS  PubMed Central  PubMed  Google Scholar 

  • Woese CR (2000) Interpreting the universal phylogenetic tree. Proc Natl Acad Sci U S A 97:8392–8396

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Woese CR (2002) On the evolution of cells. Proc Natl Acad Sci U S A 99:8742–8747

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A 74:5088–5090

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria and Eukarya. Proc Natl Acad Sci U S A 87:4576–4579

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Sonea S (1988) The global organism: a new view of bacteria. The Sciences 28(4):38–45

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Barbieri, M. (2015). The First Three Billion Years. In: Code Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-14535-8_5

Download citation