Skip to main content

Characterization of Plant Growth-Promoting Rhizobacteria (PGPR): A Perspective of Conventional Versus Recent Techniques

  • Chapter
Heavy Metal Contamination of Soils

Part of the book series: Soil Biology ((SOILBIOL,volume 44))

Abstract

With the boost of urbanization and industrialization, the soil toxicity by heavy metals and other inorganic and/or organic pollutants has become a major environmental issue. Considerable efforts are being made for developing an efficient and sustainable technology for soil remediation and improving the soil fertility. Soil bioremediation by using plant growth-promoting rhizobacteria (PGPR) may prove to be a promising cost-effective and eco-friendly technology. Application of PGPR must be precise in terms of selection of rhizobacterial strains, soil conditions, crop, and other environmental properties to attain the maximum results. Moreover, prior evaluation of in vitro plant growth promontory traits and other biochemical properties expressed by PGPR strains needs to be determined in laboratory before field trial. This review deals with various methods for PGPR detection and characterization with a focus on comparative evaluation of conventional versus recent techniques of PGPR detection/characterization. Their on-field application, mechanism of action, strengths, drawbacks with current opportunities, and economic feasibility in this area of research have been integrated in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal R, Satlewal A, Chaudhary M, Verma A, Singh R, Verma AK, Kumar R, Singh KP (2012) Rapid detection of cadmium-resistant plant growth promotory c: a perspective of ELISA and QCM-based immunosensor. J Microbiol Biotechnol 22(6):849–855

    Article  CAS  PubMed  Google Scholar 

  • Anderson JPE, Domsch KH (1978) Soil Biol Biochem 10:215–221

    Article  CAS  Google Scholar 

  • Atlas RM, Bartha R (1993) Microbial ecology: historical development in microbial ecology, fundamentals and applications. The Benjamin/Cummings Publishing Company, Menlo Park, Redwood City, CA, pp 3–20

    Google Scholar 

  • Bååth E, Arnebrant K (1994) Soil Biol Biochem 26(8):995–1001

    Article  Google Scholar 

  • Bakken LR, Olsen RA (1989) Soil Biol Biochem 21:789

    Article  Google Scholar 

  • Barr JG, Emmerson AM, Hogg GM, Smyth E (1989) API-20NE and sensititre autoidentification systems for identifying Pseudomonas spp. J Clin Pathol 42:1113–1114

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bashan J, Holguin G (1998) Soil Biol Biochem 30(8/9):1225–1228

    Article  CAS  Google Scholar 

  • Bhattacharya S, Jang J, Yang L, Akin D, Bashir R (2007) Biomems and nanotechnology-based approaches for rapid detection of biological entities. J Rapid Meth Autom Microbiol 15:1–32

    Article  CAS  Google Scholar 

  • Campbell R, Greaves MP (1990) Anatomy and community structure of the rhizosphere. In: Lynch JM (ed) The rhizosphere. Wiley, Essex, pp 11–34

    Google Scholar 

  • Carter RM, Mekalanos JJ, Jacobs MB, Lubrano GJ, Guilbault GG (1995) Quartz crystal microbalance detection of Vibrio cholerae O139 serotype. J Immunol Methods 187:121–125

    Article  CAS  PubMed  Google Scholar 

  • Cerritos R, Vinuesa P, Eguiarte LE, Herrera-Estrella L, Alcaraz-Peraza LD, Arvizu-Go´mez JL, Olmedo G, Ramirez E, Siefert JL, Souza V (2008) Bacillus coahuilensis sp. nov., a moderately halophilic species from a desiccation lagoon in the Cuatro Cie´negas Valley in Coahuila, Mexico. Int J Syst Evol Microbiol 58:919–923

    Article  CAS  PubMed  Google Scholar 

  • Choudhary MK, Agrawal R, Kumar R, Singh P, Gupta BRK, Singh KP (2010) Detection of cadmium-resistant rhizobacteria using piezoelectric nanobiosensor. Int J Nanosci 9:461–469

    Article  CAS  Google Scholar 

  • Collins MD, Jones D (1981) Distribution of isoprenoid quinine structural types in bacteria and their taxonomic implications. Microbiol Rev 45:316–354

    PubMed Central  CAS  PubMed  Google Scholar 

  • De Boer E, Beumer RR (1999) Methodology for detection and typing of foodborne microorganisms. Int J Food Microbiol 50:119–130

    Article  PubMed  Google Scholar 

  • Depret G, Laguerre G (2008) Plant phenology and genetic variability in root and nodule development strongly influence genetic structuring of Rhizobium leguminosarum biovar viciae populations nodulating pea. New Phytol 179:224–235

    Article  PubMed  Google Scholar 

  • do Vale Barreto Figueiredo M, Seldin L, Fernando de Araujo F, de Lima Ramos Mariano R (2010) Plant growth promoting rhizobacteria: fundamentals and applications. Plant growth and health promoting bacteria. Microbiol Monogr 18, DOI: 10.1007/978-3-642-13612-2_2, http://www.springer.com/978-3-642-13611-5

    Google Scholar 

  • Dufrêne YF (2002) Atomic force microscopy, a powerful tool in microbiology. J Bacteriol 184:5205–5213

    Article  PubMed Central  PubMed  Google Scholar 

  • Eiland F (1983) Soil Biol Biochem 15:665–670

    Article  CAS  Google Scholar 

  • Enebak SA, Wei G, Kloepper JW (1997) Forest Sci 44:139–144

    Google Scholar 

  • EPA 542/F-06/013 (2006) In situ treatment technologies for contaminated soil, United States Environmental Protection Agency, Solid Waste and Emergency Response 5203P, EPA 542/F-06/013, Nov 2006. www.epa.gov/tio/tsp

  • Epstein CB, Butow RA (2000) Microarray technology – enhanced versatility persistent challenge. Curr Opin Biotechnol 11:36–41

    Article  CAS  PubMed  Google Scholar 

  • Graham TW, Sabelnikov AG (2004) How much is enough: real-time detection and identification of biological weapon agents. J Homeland Sec Emerg Manag 1:1–13

    Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37:395–412

    Article  CAS  Google Scholar 

  • Head IM, Saunders JR, Pickup RW (1998) Microb Ecol 35:1–21

    Article  CAS  PubMed  Google Scholar 

  • Helfinstine SL, Lavrentovich OD, Woolverton CJ (2006) Lyotropic liquid crystal as a real-time detector of microbial immune complexes. Lett Appl Microbiol 43:27–32

    Article  CAS  PubMed  Google Scholar 

  • Hopkins DW, Macnaughton SJ, O'Donnell AG (1991) Soil Biol Biochem 23:217

    Article  Google Scholar 

  • Jacobs MBR, Cater M, Lubrano GJ, Guilbault GG (1995) A piezoelectric biosensor for Listeria monocytogenes. Am Lab 27:26–28

    Google Scholar 

  • Karunakaran C, Jayas DS (2005) Nanotechnology – an emerging technology for use in agricultural and food research. Proceedings of the CSAE/SCGR, paper no. 05–001

    Google Scholar 

  • Kua CH, Lam YC, Yang C, Toumi KY (2005) Review of bio-particle manipulation using dielectrophoresis. Report on innovation in manufacturing systems and technology. http://hdl.handle.net/1721.1/7464. Accessed 15 Jan 2005

  • Kumar A (2000) http://www.tms.org/pubs/journals/JOM/0010/Kumar/Kumar-0010.htmc

  • Lee DY, Lauder H, Cruwys H, Falletta P, Beaudette LA (2008) Development and application of an oligonucleotide microarray and real-time quantitative PCR for detection of wastewater bacterial pathogens. Sci Total Environ 398:203–211

    Article  CAS  PubMed  Google Scholar 

  • Lemarchand K, Masson L, Brousseau R (2004) Molecular biology and DNA microarray technology for microbial quality monitoring of water. Crit Rev Microbiol 30:145–172

    Article  CAS  PubMed  Google Scholar 

  • Logan NA, Berkeley RCW (1984) Identification of Bacillus strains using the API system. J Gen Microbiol 130:1871–1882

    CAS  PubMed  Google Scholar 

  • Logan NA, Berge O, Bishop AH, Busse HJ, De Vos P, Fritze D, Heyndrickx M, Kampfer P, Rabinovitch L, Salkinoja-Salonen MS, Seldin L, Ventosa A (2009) Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 59(8):2114–2121

    Article  CAS  PubMed  Google Scholar 

  • Lucas García JA, Domenech J, Santamaría C, Camacho M, Daza A, Gutiérrez Mañero FJ (2004) Environ Exp Bot 52(3):239–251

    Article  Google Scholar 

  • Mannheimer CA (1999) An overview of chemotaxonomy, and its role in creating a phylogenetic classification system. Agricola 87–90

    Google Scholar 

  • Masters CI, Shallcross JA, Mackey BM (1994) Effect of stress treatments on the detection of Listeria monocytogenes and enterotoxigenic Escherichia coli by the polymerase chain reaction. J Appl Bacteriol 77:73–79

    Article  CAS  PubMed  Google Scholar 

  • Miller JM, Rhoden DL (1991) Preliminary evaluation of Biolog, a carbon source utilization method for bacterial identification. J Clin Microbiol 29:1143–1147

    PubMed Central  CAS  PubMed  Google Scholar 

  • Monteiro JM, Vollú RE, Coelho MRR, Alviano CS, Blank AF, Seldin L (2009) Culture-dependent and -independent approaches to analyze the bacterial community of different genotypes of Chrysopogon zizanioides (L.) Roberty (vetiver) rhizospheres. J Microbiol 47:363–370

    Article  CAS  PubMed  Google Scholar 

  • Montinaro S, Concas A, Pisu M, Cao G (2012) Remediation of heavy metals contaminated soils by ball milling. Chem Eng Trans 28

    Google Scholar 

  • Mota FF, Gomes EA, Paiva E, Seldin L (2005) Assessment of the diversity of Paenibacillus species in environmental samples by a novel rpoB-based PCR-DGGE method. FEMS Microbiol Ecol 53:317–328

    Article  PubMed  Google Scholar 

  • Muramatsu H, Kajiwara K, Tamiya E, Karube I (1986) Piezoelectric immunosensor for the detection of Candida albicans microbes. Anal Chem Acta 188:257–261

    Article  Google Scholar 

  • Pires MN, Seldin L (1997) Evaluation of Biolog system for identification of strains of Paenibacillus azotofixans. Antonie Leeuwenhoek 71:195–200

    Article  CAS  PubMed  Google Scholar 

  • Ramos Solano B, Pereyra de la Iglesia MT, Probanza A, Lucas García JA, Megías M, Gutiérrez Mañero FJ (2007) Plant Soil 287:59–68

    Google Scholar 

  • Ramos B, Lucas García JA, Probanza A, Barrientos ML, Gutiérrez Mañero FJ (2003) Environ Exp Bot 49:61–68

    Article  Google Scholar 

  • Reichardt W, Briones A, de Jesus R, Padre B (2001) Appl Soil Ecol 17:151–163

    Article  Google Scholar 

  • Rodríguez-Díaz M, Rodelas B, Pozo C, Martínez-Toledo MV, González-López J (2008) A review on the taxonomy and possible screening traits of plant growth promoting rhizobacteria. In: Ahmad I, Pichtel J, Hayat S (eds) Plant-bacteria interactions: strategies and techniques to promote plant growth. Wiley, Weinheim

    Google Scholar 

  • Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477

    PubMed Central  CAS  PubMed  Google Scholar 

  • Seldin L, Penido EGC (1986) Identification of Bacillus azotofixans using API tests. Antonie Leeuwenhoek 52:403–409

    Article  CAS  PubMed  Google Scholar 

  • Department of Agriculture Natural Resources Conservation Service, Soil Quality Institute, United States (2000) Soil Quality – Urban Technical Note No. 3, heavy metal soil contamination. Department of Agriculture Natural Resources Conservation Service, Soil Quality Institute, United States

    Google Scholar 

  • Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849

    Article  CAS  Google Scholar 

  • Stackebrandt E, Liesack W (1993) Nucleic acids and classification. In: Goodfellow M, O’Donnell AG (eds) Handbook of new bacterial systematics. Academic, London, pp 151–194

    Google Scholar 

  • Su XD, Li SFY, Kwang J, Low S (2000) Piezoelectric quartz crystal based screening test for porcine reproductive and respiratory syndrome virus infection in pigs. Analyst 125:725–730

    Article  CAS  Google Scholar 

  • Suzuki K, Goodfellow M, O’Donnell AG (1993) Cell envelopes and classification. In: Goodfellow M, O’Donnell AG (eds) Handbook of new bacterial systematics. Academic, London, pp 195–250

    Google Scholar 

  • Tang JC, Wang RG, Niu XW, Wang M, Chu HR, Zhou QX (2010) Characterisation of the rhizoremediation of petroleum-contaminated soil: effect of different influencing factors. Biogeosciences 7:3961–3969

    Article  CAS  Google Scholar 

  • Tunlid A, White DC (1992) Biochemical analysis of biomass community structure, nutritional status, and metabolic activity of microbial communities in soil. In: Stotzky G, Bollag JM (eds) Soil biochemistry. Marcel Dekker, New York, pp 229–262

    Google Scholar 

  • van der Woude MW (2006) FEMS Microbiol Lett 254(2):190–197

    Article  PubMed  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) Soil Biol Biochem 19(6):703–707

    Article  CAS  Google Scholar 

  • Wang L-T, Lee F-L, Tai C-J, Kasai H (2007) Comparison of gyrB gene sequences, 16S rRNA gene sequences and DNA-DNA hybridization in the Bacillus subtilis group. Int J Syst Evol Microbiol 57:1846–1850

    Article  CAS  PubMed  Google Scholar 

  • Xu M, Lu N (2012) Research on removing heavy metals from mine tailings. Disaster Adv 5:116–120

    Google Scholar 

  • Yang H, An H, Feng G, Li Y (2005) Visualization and quantitative roughness analysis of peach skin by atomic force microscopy under storage. LWT Food Sci Technol 38:571–577

    Article  CAS  Google Scholar 

  • Yao Z, Li J, Xie H, Yu C (2012) Review on remediation technologies of soil contaminated by heavy metals. Procedia Environ Sci 16:722–729

    Article  CAS  Google Scholar 

  • Ye J, Letcher SV, Rand AG (1997) Piezoelectric biosensor for detection of Salmonella Typhimurium. J Food Sci 62:1067–1071

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruchi Agrawal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Agrawal, R., Satlewal, A., Varma, A. (2015). Characterization of Plant Growth-Promoting Rhizobacteria (PGPR): A Perspective of Conventional Versus Recent Techniques. In: Sherameti, I., Varma, A. (eds) Heavy Metal Contamination of Soils. Soil Biology, vol 44. Springer, Cham. https://doi.org/10.1007/978-3-319-14526-6_23

Download citation

Publish with us

Policies and ethics