Challenges and Opportunities for Second Language Learners in Undergraduate Mathematics

  • Viviane Durand-Guerrier
  • Mercy Kazima
  • Paul Libbrecht
  • Judith Njomgang Ngansop
  • Leila Salekhova
  • Nail Tuktamyshov
  • Carl Winsløw
Part of the New ICMI Study Series book series (NISS)


In this chapter, we describe challenges and opportunities that second language learners face in undergraduate mathematics programs. The presence of such students is nowadays common in many undergraduate courses due to migration, student mobility, and other factors. We provide examples of various multilingual contexts at the university level, summarize insights from international research on this topic, and present emergent proposals for helping students to overcome these challenges. This chapter highlights the importance of continuing research on the topic of second language learners in undergraduate mathematics courses so that we can offer research-based approaches to improve undergraduate mathematics teaching in multilingual contexts. This chapter will support the mathematics education research community involved in advanced mathematics, as well as instructors and policy makers, to develop awareness of the issues involved in undergraduate mathematics learning and teaching for second language learners.


Mathematical Notation Language Learner Official Language Immigrant Student Foreign Student 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Barton, B., Chan, R., King, C., Neville-Barton, P., & Sneddon, J. (2005). EAL undergraduates learning mathematics. International Journal of Mathematical Education in Science and Technology, 36(7), 721–729.CrossRefGoogle Scholar
  2. Barton, B., & Nevillle-Barton, P. (2003). Language issues in undergraduate mathematics: A report of two studies. New Zealand Journal of Mathematics, 32(Suppl), 19–28.Google Scholar
  3. Barton, B., & Nevillle-Barton, P. (2004). Undergraduate mathematics learning in English by speakers of other languages. Paper presented at the 10th International Congress on Mathematics Education, Copenhagen, Denmark.Google Scholar
  4. Bebbouchi, R. (2011). Le passage des mathématiques en Arabe aux mathématiques en français en Algérie : difficultés et avantages. In M. Setati, T. Nkambule, & L. Goosen (Eds.), Proceedings of the ICMI Study 21 Conference: Mathematics Education and Language Diversity (pp. 528–533). São Paulo, Brazil: ICMI Study 21.Google Scholar
  5. Ben Kilani, I. (2005). Les effets didactiques des différences de fonctionnement de la négation dans la langue arabe, la langue française et le langage mathématique. Thèse en co-tutelle de l’université de Tunis et de l’université Lyon 1, Tunisie et France.Google Scholar
  6. Bloom, B. S., Engelhart, M. D., Furst, E. J., Hill, W. H., & Krathwohl, D. (1956). Taxonomy of educational objectives: The cognitive domain. New York: McKay.Google Scholar
  7. Cajori, F. (1928). A history of mathematical notations. Chicago: Open Court.Google Scholar
  8. Centre for language studies (2010). Language Mapping Survey for Malawi. University of Malawi. Report submitted to Open Society. Initiative for Southern Africa.Google Scholar
  9. Durand-Guerrier, V. (2003). Which notion of implication is the right one? From logical considerations to a didactic perspective. Educational Studies in Mathematics, 53, 5–34.CrossRefGoogle Scholar
  10. Durand-Guerrier, V. (2008). Truth versus validity in mathematical proof. ZDM Mathematics Education, 40, 373–384.CrossRefGoogle Scholar
  11. Durand-Guerrier, V., & Ben Kilani, I. (2004). Négation grammaticale versus négation logique dans l’apprentissage des mathématiques. Exemple dans l’enseignement secondaire Tunisien. Cahiers du Français Contemporain, 9, 29–55.Google Scholar
  12. Durand-Guerrier, V., Boero, P., Douek, N., Epp, S., & Tanguay, D. (2012). Examining the role of logic in teaching proof. In G. Hanna & M. De Villiers (Eds.), Proof and proving in mathematics education (pp. 369–389). New York: Springer.Google Scholar
  13. Epp, S. (2011). Variables in mathematics education. In P. Blackburn, H. van Ditmarsch, M. Manzano, & F. Soler-Toscano (Eds.), Tools for teaching logic (pp. 54–61). New York: Springer.CrossRefGoogle Scholar
  14. Fuchs, E. (1996). Les ambiguïtés du français. Paris, France: Orphrys.Google Scholar
  15. Kazima, M. (2006). Malawian students’ meanings for probability vocabulary. Educational Studies in Mathematics, 64(2), 169–189.CrossRefGoogle Scholar
  16. Libbrecht, P., Droujkova, M., & Melis, E. (2011). Notations across cultures for teaching. In M. Setati, T. Nkambule, & L. Goosen (Eds.), Proceedings of the ICMI Study 21 Conference: Mathematics Education and Language Diversity (pp. 160–168). São Paulo, Brazil: ICMI Study 21.Google Scholar
  17. Mathé, A. C. (2012). Jeux et enjeux de langage dans la construction de références partagées en classe de géométrie. Recherches en Didactique des Mathématiques, 32(2), 195–228.Google Scholar
  18. Njomgang Ngansop, J., & Durand-Guerrier, V. (2012). Negation of mathematical statements in French in multilingual contexts: An example in Cameroon. In M. Setati, T. Nkambule, & L. Goosen (Eds.), Proceedings of the ICMI Study 21 Conference: Mathematics Education and Language Diversity (pp. 268–275). São Paulo, Brazil: ICMI Study 21.Google Scholar
  19. Salekhova, L. (2007). Didactic model of bilingual teaching mathematics in high school. Unpublished doctoral dissertation, Kazan Federal University, Russia.Google Scholar
  20. Salekhova, L., & Tuktamyshov, N. (2011). Bilingual mathematics teaching in conditions of higher educational establishment. In M. Setati, T. Nkambule, & L. Goosen (Eds.), Proceedings of the ICMI Study 21 Conference: Mathematics Education and Language Diversity (pp. 342–347). São Paulo, Brazil: ICMI Study 21.Google Scholar
  21. Salimov, R. B., & Tuktamyshov, N. K. (2000). Mathematics. Kazan, Russia: Izdatelstvo “Magarif”.Google Scholar
  22. Selden, A., & Selden, J. (1995). Unpacking the logic of mathematical statements. Educational Studies in Mathematics, 29(2), 123–151.CrossRefGoogle Scholar
  23. Tsoungui, F. (1980) Le français écrit en classe de 6ème à Yaoundé. Recherches des interférences de l’Ewondo dans le français et proposition pédagogiques. Thèse de 3ème cycle, Université de la Sorbonne Nouvelle, France.Google Scholar
  24. Vygotsky, L. S. (1934). Myshlenie i rech. Psikhologicheskie issledovanija [Thinking and speech. Psychological investigations]. Moscow-Leningrad, Russia: Gosudarstvennoe Sotsialno-Ekonomicheskoe Izdatel’stvo.Google Scholar
  25. Zevenbergen, R. (2001). Changing contexts in tertiary mathematics: Implications for diversity and equity. In D. Holton (Ed.), The teaching and learning of mathematics at university level: An ICMI study. Dordrecht, The Netherlands: Kluwer.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Viviane Durand-Guerrier
    • 1
  • Mercy Kazima
    • 2
  • Paul Libbrecht
    • 3
  • Judith Njomgang Ngansop
    • 4
  • Leila Salekhova
    • 5
  • Nail Tuktamyshov
    • 6
  • Carl Winsløw
    • 7
  1. 1.University of MontpellierMontpellier Cedex 5France
  2. 2.University of MalawiZombaMalawi
  3. 3.InformaticsWeingarten University of Education Kirchplatz 2WeingartenGermany
  4. 4.Université de Yaoundé 1YaoundéCameroun
  5. 5.Kazan Federal UniversityKazanRussia
  6. 6.Kazan University of Architecture and EngineeringKazanRussia
  7. 7.Institut for Naturfagenes DidaktikUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations