Early Developmental Responses of Plants Exposed to Metals and Oxides Nanomaterials

  • Lok R. Pokhrel
  • Brajesh DubeyEmail author


Over the last decade or so, one question about engineered nanomaterials (ENMs) has been constantly asked: Are nanomaterials inherently toxic? It is because characteristics such as “nano” scale size, surface charge, surface plasmon resonance, greater surface area, and propensity to ligand with (in)organic and/or polymeric molecules set ENMs physicochemically apart from their bulk/parent analogs. Related to unique properties, which enable greater functionality in a wide range of consumer applications, is the uncertainty about whether unique risk is posed to the environment, health, and safety (EHS) as ENMs are anthropogenically released into the environment. Recognized as the major sinks, soil, water, and air contamination of ENMs, including their leachable or modified by-products, is inevitable. Understanding of potential impacts on terrestrial plant species has remained unclear as anomalies in morphological, anatomical, and physiological endpoints, which have potential for impairing later development in life, are not routinely screened for, however. In this chapter, we report valuable information synthesized via thorough literature review of the current understanding of potential implications of ENM release and exposure to plants via soil, water, and atmospheric deposition. In particular, we report potential fate, biouptake, site of translocation/associated mechanisms, in vivo transformation, and toxicity (germination rate, growth and development, anatomical and physiological anomalies, and yield) of metal-based ENMs. Additionally, potential mechanisms and factors influencing ENMs’ toxicity are explained. Such information is critical to direct future research aimed at uncovering better understanding of nanotoxicology in plants, and to determine whether risk to public health exists from exposure to ENMs through the dietary route.


Engineered nanomaterials Phytotoxicity Biouptake Environmental safety Mechanisms Developmental effects Health risk 


  1. Arora S, Sharma P, Kumar S, Nayan R, Khanna PK, Zaidi MGH (2012) Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regul 66:303–310CrossRefGoogle Scholar
  2. Behar A (2013) Study the use of nanoparticles in food. Accessed 31 Aug 2014
  3. BlueRidgeKitties (2011) Leaf cross-section. Accessed 6 Sept 2014
  4. Bowker M (2002) The going rate for catalysts. Nat Mater 1:205–206PubMedCrossRefGoogle Scholar
  5. Choi O, Hu ZQ (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42:4583–4588PubMedCrossRefGoogle Scholar
  6. Delmail D, Pascal L, Philippe H, Laure L, Christian M, Michel B (2011) Physiological, anatomical and phenotypical effects of a cadmium stress in different-aged chlorophyllian organs of Myriophyllum alterniflorum DC (Haloragaceae). Environ Exp Bot 72:174–181CrossRefGoogle Scholar
  7. Dimpka CO, Latta DE, McLean JE, Britt DW, Boyanov MI, Anderson AJ (2013a) Fate of CuO and ZnO nano- and microparticles in the plant environment. Environ Sci Technol 47:4734–4742CrossRefGoogle Scholar
  8. Dimpka CO, McLean JE, Martineau N, Britt DW, Haverkamp R, Anderson AJ (2013b) Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix. Environ Sci Technol 47:1082–1090CrossRefGoogle Scholar
  9. Dorney KM, Baker JD, Edwards ML, Kanel SR, O’Malley M, Pavel Sizemore IE (2014) Tangential flow filtration of colloidal silver nanoparticles: a “green” laboratory experiment for chemistry and engineering students. J Chem Educ 91(7):1044–1049CrossRefGoogle Scholar
  10. El-Temsah YS, Joner EJ (2012) Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ Toxicol 27:42–49PubMedCrossRefGoogle Scholar
  11. El Badawy AM, Silva RG, Morris B, Scheckel KG, Suidan MT, Tolaymat TM (2011) Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol 45:283–287PubMedCrossRefGoogle Scholar
  12. Fabrega J, Renshaw JC, Lead JR (2009) Interactions of silver nanoparticles with Pseudomonas putida biofilms. Environ Sci Technol 43:9004–9009PubMedCrossRefGoogle Scholar
  13. Flory J, Kanel SR, Racz L, Impellitteri CA, Silva RG, Goltz MN (2013) Influence of pH on the transport of silver nanoparticles in saturated porous media: laboratory experiments and modeling. J Nanopart Res 15:1484–1494CrossRefGoogle Scholar
  14. Gardea-Torresdey JL, Rico CM, White J (2014) Trophic transfer, transformation, and impact of engineered nanomaterials in terrestrial environments. Environ Sci Technol 48:2526–2540PubMedCrossRefGoogle Scholar
  15. Geisler-Lee J, Wang Q, Yao Y, Zhang W, Geisler M, Li K, Huang Y et al (2013) Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana. Nanotoxicol 7:323–337CrossRefGoogle Scholar
  16. Gubbins EJ, Batty LC, Lead JR (2011) Phytotoxicity of silver nanoparticles to Lemna minor L. Environ Poll 159:1551–1559CrossRefGoogle Scholar
  17. Hernandez-Viezcas JA, Castillo-Michel H, Servin AD, Peralta-Videa JR, Gardea-Torresdey JL (2011) Spectroscopic verification of zinc absorption and distribution in the desert plant Prosopis juliflora-velutina (velvet mesquite) treated with ZnO nanoparticles. Chem Eng J 170:346–352PubMedCentralPubMedCrossRefGoogle Scholar
  18. Hernandez-Viezcas JA, Castillo-Michel H, Andrews JC, Cotte M, Rico C, Peralta-Videa JR et al (2013) In situ synchrotron x-ray fluorescence mapping and speciation of CeO2 and ZnO nanoparticles in soil cultivated soybean (Glycine max). ACS Nano 7:1415–1423PubMedCrossRefGoogle Scholar
  19. Jacob DL, Barchardt JD, Navaratnam L, Otte ML, Bezbaruah A (2013) Uptake and translocation of Ti from nanoparticles in crops and wetland plants. Int J Phytorem 15:142–153CrossRefGoogle Scholar
  20. Kim S, Kim J, Lee I (2011) Effects of Zn and ZnO nanoparticles and Zn2+ on soil enzyme activity and bioaccumulation of Zn in Cucumis sativus. Chem Ecol 27:49–55CrossRefGoogle Scholar
  21. Kumar V, Guleria P, Kumar V, Yadav SK (2013) Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana. Sci Total Environ 461–462:46–462Google Scholar
  22. Larue C, Laurette J, Herlin-Boime N, Khodja H, Fayard B, Flank AM et al (2012) Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): influence of diameter and crystal phase. Sci Total Environ 431:197–208PubMedCrossRefGoogle Scholar
  23. Larue C, Castillo-Michel H, Sobanska S, Cecillon L, Bureau S, Barthes V et al (2014) Foliar exposure of the crop Lactuca sativa to silver nanoparticles: evidence for internalization and changes in Ag speciation. J Hazard Mater 264:98–106PubMedCrossRefGoogle Scholar
  24. Lee W-M, Kwak JI, An Y-J (2012) Effect of silver nanoparticles in crop plants Phaseolusradiatus and Sorghum bicolor: media effect on phytotoxicity. Chemosphere 86:491–499PubMedCrossRefGoogle Scholar
  25. Lin D, Xing B (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42:5580–5585PubMedCrossRefGoogle Scholar
  26. Liu J, Hurt RH (2010) Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ Sci Technol 44:2169–2175PubMedCrossRefGoogle Scholar
  27. Morales MI, Rico C, Hernandez-Viezcas JA, Nunez JE, Barrios AC, Tafoya A et al (2013) Toxicity assessment of cerium oxide nanoparticles in cilantro (Coriandrum sativum L.) plants grown in organic soil. J Agric Food Chem 61:6224–6230PubMedCrossRefGoogle Scholar
  28. National Nanotechnology Initiative (NNI) (2006). Environmental, health and safety research needs for engineered nanoscale materials. September nanoscale science, engineering, and technology subcommittee, Committee on technology, National Science and Technology Council. Accessed 9 June 2011
  29. Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N et al (2008) Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42:8959–8964PubMedCrossRefGoogle Scholar
  30. Owano N (2014) Surrey nanosystems has “super black” material. Accessed 31 Aug 2014
  31. Pokhrel LR, Silva T, Dubey B, El Badawy AM, Tolaymat TM, Scheuerman PR (2012) Rapid screening of aquatic toxicity of several metal-based nanoparticles using the MetPLATE™ bioassay. Sci Tot Environ 426:414–422CrossRefGoogle Scholar
  32. Pokhrel LR, Dubey B (2012a) Potential impact of low-concentration silver nanoparticles on predator-prey interactions between predatory dragonfly nymph and Daphnia magna as a prey. Environ Sci Technol 46(14):7755–7762PubMedCrossRefGoogle Scholar
  33. Pokhrel LR, Dubey B (2012b) Untangling species sensitivity paradox in environmental research. Expert Opin Environ Biol 1:2Google Scholar
  34. Pokhrel LR, Dubey B (2013) Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles. Sci Total Environ 452–453:321–332PubMedCrossRefGoogle Scholar
  35. Pokhrel LR, Dubey B, Scheuerman PR (2013) Impacts of select organic ligands on the colloidal stability, dissolution dynamics, and toxicity of silver nanoparticles. Environ Sci Technol 47:12877–12885PubMedCrossRefGoogle Scholar
  36. Pokhrel LR, Andersen CP, Rygiewicz PT, Johnson MG (2014a) Preferential interaction of Na+ over K+ with carboxylate-functionalized silver nanoparticles. Sci Total Environ 490:11–18PubMedCrossRefGoogle Scholar
  37. Pokhrel LR, Dubey B, Scheuerman PR (2014b) Natural water chemistry (dissolved organic carbon, pH, and hardness) modulates colloidal stability, dissolution, and antimicrobial activity of silver nanoparticles. Environ Sci Nano 1:45–54CrossRefGoogle Scholar
  38. Pradhan P, Patra P, Das S, Chandra S, Mitra S, Dey KK et al (2013) Photochemical modulation of biosafe manganese nanoparticles on Vigna radiata: a detailed molecular, biochemical, and biophysical study. Environ Sci Technol 47:13122–13131PubMedCrossRefGoogle Scholar
  39. Prasad TNVK, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Reddy KR et al (2012) Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutr 35:905–927CrossRefGoogle Scholar
  40. Priester JH, Ge Y, Mielke RE, Horst AM, Cole Moritz S, Espinosa K et al (2012) Soybean susceptibility to manufactured nanomaterials: evidence for food quality and soil fertility interruption. Proc Natl Acad Sci USA 109:E2451–E2456PubMedCentralPubMedCrossRefGoogle Scholar
  41. Puertas-Mejia MA, Ruiz-Diez B, Fernandez-Pascual M (2010) Effect of cadmium ion excess over cell structure and functioning of Zea mays and Hordeum vulgare. Biochem Syst Ecol 38:285–291CrossRefGoogle Scholar
  42. Ratte HT (1999) Bioaccumulation and toxicity of silver compounds: a review. Environ Toxicol Chem 18:89–108CrossRefGoogle Scholar
  43. Sabo-Attwood T, Unrine JM, Stone JW, Murphy CJ, Ghoshroy S, Blom D et al (2012) Uptake, distribution and toxicity of gold nanoparticles in tobacco (Nicotiana xanthi) seedlings. Nanotoxicology 6(4):353–360PubMedCrossRefGoogle Scholar
  44. Shams G, Ranjbar M, Amiri A (2013) Effect of silver nanoparticles on concentration of silver element and growth indexes in cucumber (Cucumis sativus L. negeen). J Nanopart Res 15:1630–1642CrossRefGoogle Scholar
  45. Sheykhbaglou R, Sedghi M, Tajbakhsh Shishevan M, Seyed Sharifi R (2010) Effects of nano-iron oxide particles on agronomic traits of soybean. Not Sci Biol 2:112–113Google Scholar
  46. Song U, Jun H, Waldman B, Roh J, Kim Y, Yi J et al (2013) Functional analyses of nanoparticle toxicity: A comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersicon esculentum). Ecotoxicol Environ Saf 93:60–67PubMedCrossRefGoogle Scholar
  47. Silva TU, Pokhrel LR, Dubey B, Maier KJ, Tolaymat TM, Liu X (2014) Particle size, surface charge and concentration dependent ecotoxicity of three organo-coated silver nanoparticles: comparison between general linear model-predicted and observed toxicity. Sci Total Environ 468–469:968–976PubMedCrossRefGoogle Scholar
  48. Tatur S, Maccarini M, Barker R, Nelson A, Fragneto G (2013) Effect of functionalized gold nanoparticles on floating lipid bilayers. Langmuir 29:6606–6614PubMedCrossRefGoogle Scholar
  49. The Project on Emerging Nanotechnologies. Accessed 31 Aug 2014
  50. Wang Q, Ma XM, Zhang W, Pei HC, Chen YS (2012) The impact of cerium oxide nanoparticles on tomato (Solanum lycopersicum L.) and its implications for food safety. Metallomics 4:1105–1112PubMedCrossRefGoogle Scholar
  51. Yin L, Cheng Y, Espinasse B, Colman BP, Auffan M, Wiesner M et al (2011) More than the ions: the effects of silver nanoparticles on Lolium multiflorum. Environ Sci Technol 45:2360–2367PubMedCrossRefGoogle Scholar
  52. Yin L, Colman BP, McGill BM, Wright JP, Bernhardt ES (2012) Effects of silver nanoparticle exposure on germination and early growth of eleven wetland plants. PLoS ONE 7(10):e47674PubMedCentralPubMedCrossRefGoogle Scholar
  53. Yu KO, Braydich-Stolle LK, Mattie DM, Schlager JJ, Hussain SM (2009) In vitro and in vivo models for nanotoxicity testing. In: Sahu SC, Casciano DA (eds) Nanotoxicity: from in vivo and in vitro models to health risks. Wiley, West Sussex, pp 335–348CrossRefGoogle Scholar
  54. Zhai G, Walters KS, Peate DW, Alvarez PJJ, Schnoor JL (2014) Transport of gold nanoparticles through plasmodesmata and precipitation of gold ions in woody poplar. Environ Sci Technol Lett 1(2):146–151PubMedCrossRefGoogle Scholar
  55. Zhang P, Ma YH, Zhang ZY, He X, Guo Z, Tai RZ et al (2012) Comparative toxicity of nanoparticulate/bulk Yb2O3 and YbCl3 to cucumber (Cucumis sativus). Environ Sci Technol 46(3):1834–1841PubMedCrossRefGoogle Scholar
  56. Zhao L, Sun Y, Hernandez-Viezcas JA, Servin AD, Hong J, Niu G et al (2013) Influence of CeO2 and ZnO nanoparticles on cucumber physiological markers and bioaccumulation of Ce and Zn: a life cycle study. J Agric Food Chem 61:11945–11951PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Public HealthTemple UniversityPhiladelphiaUSA
  2. 2.Associate Professor (Environmental Engineering), Department of Civil EngineeringIndian Institute of Technology - KharagpurKharagpurIndia

Personalised recommendations