Skip to main content

Latest Developments of Nanotoxicology in Plants

  • Chapter
  • First Online:

Abstract

In the last years metal nanoparticles have been largely used for their unique physical, chemical, and biological properties, which differ from those of bulk materials. The wide number of applications has led to a significant diffusion of such particles in the environment and their absorption by plants. The aim of this chapter is to follow the metabolic pathway of nanoparticles (NPs) and nanomaterials inside the plant cells. In particular, the effects of different metal nanomaterials on seed germination, growth, chlorophyll concentration, biomass accumulation, root elongation, variation in the shoot/root ratio, photosynthetic characteristics, and antioxidant responses will be analyzed. Furthermore, the latest studies of phytotoxicity (including production of Reactive Oxygen Species (ROS), biomass reduction, stress levels, mitochondrial dysfunction, membrane damage, and release of toxic ions) will be presented. Along the chapter, the acute toxicity of nanomaterials in plants and the long-term effects to different generations will be investigated. Finally, the concentration of NPs in different parts of the plants and their uptake in plant foliar will be described with the choice of NPs that have less toxic and more useful effects in agriculture.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anjum NA, Singh N, Singh MK, Sayeed I, Duarte AC, Pereira E, Ahmad I (2013) Single-bilayer graphene oxide sheet impacts and underlying potential mechanism assessment in germinating faba bean (Vicia faba L.). Sci Total Environ 472:834–841. doi:10.1016/j.scitotenv.2013.11.018

    Article  PubMed  Google Scholar 

  • Boenigk J, Beisser D, Zimmermann S, Bock C, Jakobi J, Grabner D, Groβmann L, Rahmann S, Barcikowski S, Sures B (2014) Effects of silver nitrate and silver nanoparticles on a planktonic community: general trends after short-term exposure. PLoS ONE 9:e95340. doi:10.1371/journal.pone.00953

    Article  PubMed Central  PubMed  Google Scholar 

  • Clément L, Hurel C, Marmier N (2013) Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants—effects of size and crystalline structure. Chemosphere 90(3):1083–1090. doi:10.1016/j.chemosphere.2012.09.013

    Article  PubMed  Google Scholar 

  • Dimkpa CO, Latta DE, McLean JE, Britt DW, Boyanov MI, Anderson AJ (2013) Fate of CuO and ZnO nano- and microparticles in the plant environment. Environ Sci Technol 47(9):4734–4742. doi:10.1021/es304736y

    Article  CAS  PubMed  Google Scholar 

  • Faisal M, Saquib Q, Alatar AA, Al-Khedhairy AA, Hegazy AK, Musarrat J (2013) Phytotoxic hazards of NiO-nanoparticles in tomato: a study on mechanism of cell death. J Hazard Mater 250–251:318–332. doi:10.1016/j.jhazmat.2013.01.063

    Article  PubMed  Google Scholar 

  • Feizi H, Kamali M, Jafari L, Rezvani Moghaddam P (2013) Phytotoxicity and stimulatory impacts of nanosized and bulk titanium dioxide on fennel (Foeniculum vulgare Mill). Chemosphere 91(4):506–511. doi:10.1016/j.chemosphere.2012.12.012

    Article  CAS  PubMed  Google Scholar 

  • Gao J, Xu G, Qian H, Liu P, Zhao P, Hu Y (2013) Effects of nano-TiO2 on photosynthetic characteristics of Ulmus elongata seedlings. Environ Pollut 176:63–70. doi:10.1016/j.envpol.2013.01.027

    Article  CAS  PubMed  Google Scholar 

  • Geisler-Lee J, Brooks M, Gerfen J, Wang O, Fotis C, Sparer A, Xingmao M, Howard BV, Geisler M (2014) Reproductive toxicity and life history study of silver nanoparticle effect, uptake and transport in Arabidopsis thaliana. Nanomaterials 4:301–318. doi:10.3390/nano4020301

    Article  CAS  Google Scholar 

  • Hashemi DE, Mosavi M (2013) Effect of anatase nanoparticles (TiO2) on Parsley seed germination (Petroselinum crispum) in vitro. Biol Trace Elem Res 155:283–286

    Article  Google Scholar 

  • Husen A, Siddiqi K (2014) Carbon and fullerene nanomaterials in plant system. J Nanobiotechnol 12:16. doi:10.1186/1477-3155-12-16

    Article  Google Scholar 

  • Hussain HI, Yi Z, Rookes JE, Kong LX, Cahill DM (2013) Mesoporous silica nanoparticles as a biomolecule delivery vehicle in plants. J Nanopart Res 15:1676

    Article  Google Scholar 

  • ISTA (2009) STA rules. International Seed Testing Association, Zurich

    Google Scholar 

  • Kumar V, Guleria P, Kumar V, Yadav SK (2013) Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana. Sci Total Environ 461:462–468. doi:10.1016/j.scitotenv.2013.05.018

    Article  PubMed  Google Scholar 

  • Lahiani MH, Dervishi E, Chen J, Nima Z, Gaume A, Biris AS, Khodakovskaya MV (2013) Impact of carbon nanotube exposure to seeds of valuable crops. ACS Appl Mater Interfaces 5(16):7965–7973. doi:10.1021/am402052x

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Kim S, Kim S, Lee I (2013a) Assessment of phytotoxicity of ZnO NPs on a medicinal plant, Fagopyrum Esculentum. Environ Sci Poll Res 20(2):848–854

    Article  CAS  Google Scholar 

  • Lee S, Chung H, Kim S, Lee I (2013b) The genotoxic effect of ZnO and CuO nanoparticles on early growth of buckwheat, Fagopyrum esculentum. Water Air Soil Poll 224(9):1668–1679

    Article  Google Scholar 

  • Liu Q, Zhang X, Zhao Y, Lin J, Shu C, Wang C, Fang X (2013) Fullerene-induced increase of glycosyl residue on living plant cell wall. Environ Sci Technol 47(13):7490–7498. doi:10.1021/es4010224

    CAS  PubMed  Google Scholar 

  • Ma X, Gurung A, Deng Y (2013) Phytotoxicity and uptake of nanoscale zero-valent iron (nZVI) by two plant species. Sci Total Environ 15(443):844–849. doi:10.1016/j.scitotenv.2012.11.073

    Article  Google Scholar 

  • Masarovicova E, Kralova K (2013) Metal nanoparticles and plants. Ecol Chem Eng S 20(1):9–22

    CAS  Google Scholar 

  • Morales MI, Rico CM, Hernandez-Viezcas JA, Nunez JE, Barrios AC, Tafoya A, Flores-Marges JP, Peralta-Videa JR, Gardea-Torresdey JL (2013) Toxicity assessment of cerium oxide nanoparticles in cilantro (Coriandrum sativum L.) plants grown in organic soil. J Agric Food Chem 61(26):6224–6230. doi:10.1021/jf401628v

    Article  CAS  PubMed  Google Scholar 

  • Mura S, Seddaiu G, Bacchini F, Roggero PP, Greppi GF (2013) Advances of nanotechnology in agro-environmental studies. Italian J Agron 8:127–140. doi:10.4081/ija.2013.e18, eISSN 2039-6805

  • Nair R, Poulose A, Nagaoka Y, Yoshida Y, Maekawa T, Kumar D (2011) Uptake of FITC labeled silica nanoparticles and quantum dots by rice seedlings: effects on seed germination and their potential as biolabels for plants. J Fluoresc 21(6):2057–2068

    Article  CAS  PubMed  Google Scholar 

  • Ouda SM (2014) Antifungal activity of silver and copper nanoparticles on two plant pathogens, Alternaria alternata and Botrytis cinerea. Res J Microbiol 9:34–42. doi:10.3923/jm.2014.34.42

    Article  CAS  Google Scholar 

  • Oukarroum A, Barhoumi L, Pirastru L, Dewez D (2013) Silver nanoparticle toxicity effect on growth and cellular viability of the aquatic plant Lemna gibba. Environ Toxicol Chem 32(4):902–907. doi:10.1002/etc.2131

    Article  CAS  PubMed  Google Scholar 

  • Rico CM, Hong J, Morales MI, Zhao L, Barrios AC, Zhang JY, Peralta-Videa JR, Gardea-Torresdey JL (2013) Effect of cerium oxide nanoparticles on rice: a study involving the antioxidant defense system and in vivo fluorescence imaging. Environ Sci Technol 47(11):5635–5642

    Article  CAS  PubMed  Google Scholar 

  • Ruffini Castiglione M, Giorgetti L, Geri C, Cremonini R (2011) The effects of nano-TiO2 on seed germination, development and mitosis of root tip cells of Vicia narbonensis L. and Zea mays L. J Nanopart Res 1(6):2443–2449. doi:10.1007/s11051-010-0135-8

  • Schwabe F, Schulin R, Limbach LK, Stark W, Bürge D, Nowack B (2013) Influence of two types of organic matter on interaction of CeO2 nanoparticles with plants in hydroponic culture. Chemosphere 91(4):512–520. doi:10.1016/j.chemosphere.2012.12.025

    Article  CAS  PubMed  Google Scholar 

  • Serag MF, Kaji N, Habuchi S, Bianco A, Baba Y (2013) Nanobiotechnology meets plant cell biology: carbon nanotubes as organelle targeting nanocarriers. RSC Adv 3(15):4856–4863

    Article  CAS  Google Scholar 

  • Shams G, Ranjbar M, Amiri A (2013) Effect of silver nanoparticles on concentration of silver heavy element and growth indexes in cucumber (Cucumis sativus L. Negeen). J Nanopart Res 15(5):1630–1642

    Article  Google Scholar 

  • Song U, Jun H, Waldman B, Roh J, Kim Y, Yi J, Lee EJ (2013a) Functional analyses of nanoparticle toxicity: a comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersicon esculentum). Ecotoxicol Environ Saf 93:60–67. doi:10.1016/j.ecoenv.2013.03.033

    Article  CAS  PubMed  Google Scholar 

  • Song U, Shin M, Lee G, Roh J, Kim Y, Lee EJ (2013b) Functional analysis of TiO2 nanoparticle toxicity in three plant species. Biol Trace Elem Res 155(1):93–103. doi:10.1007/s12011-013-9765-x

    Article  CAS  PubMed  Google Scholar 

  • Vannini C, Domingo G, Onelli E, Prinsi B, Marsoni M, Espen L, Bracale M (2013) Morphological and proteomic responses of Eruca sativa exposed to silver nanoparticles or silver nitrate. PLoS ONE 8(7):e68752. doi:10.1371/journal.pone.0068752

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang Q, Ebbs SD, Chen Y, Ma X (2013) Trans-generational impact of cerium oxide nanoparticles on tomato plants. Metallomics 5(6):753–759. doi:10.1039/c3mt00033h

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Hernandez-Viezcas JA, Peralta-Videa JR, Bandyopadhyay S, Peng B, Munoz B, Keller AA, Gardea-Torresdey JL (2013) ZnO nanoparticle fate in soil and zinc bioaccumulation in corn plants (Zea mays) influenced by alginate. Environ Sci Process Impacts 15:260–266. doi:10.1039/C2EM30610G

    Article  CAS  PubMed  Google Scholar 

  • Zheng L, Hong F, Lu S, Liu C (2005) Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 104(1):83–91. doi:10.1385/bter:104:1:083

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Fundings: the work was supported by the WADIS-MAR project, and by Master and Back program funded by the Regione Autonoma della Sardegna.

Conflict of interests: the authors declare no potential conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefania Mura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mura, S., Greppi, G., Irudayaraj, J. (2015). Latest Developments of Nanotoxicology in Plants. In: Siddiqui, M., Al-Whaibi, M., Mohammad, F. (eds) Nanotechnology and Plant Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-14502-0_7

Download citation

Publish with us

Policies and ethics