Skip to main content

Comparative Account of Generalist and Specialist Species of the Entomopathogenic Fungus, Metarhizium

  • Chapter
  • First Online:
Book cover Biocontrol of Lepidopteran Pests

Part of the book series: Soil Biology ((SOILBIOL,volume 43))

  • 1239 Accesses

Abstract

Fungi belonging to the genus Metarhizium are one of the most versatile entomopathogens infecting a wide range of insects and causing natural epizootics in the agricultural fields. But not all the species of this genus have a wide host range. M. anisopliae, for instance, has a very broad host range with a potential to infect nearly 100 insect species, whereas its close relative M. acridum has a very narrow host range infecting only locusts and grasshoppers. Recent molecular advancements in the field of genomics and transcriptomics have revealed substantial differences in these two relatives with respect to their host range. M. anisopliae produces large number of diverse secreted proteins when compared to M. acridum which allows it to infect a wider range of hosts. Unlike M. anisopliae, M. acridum lacks the genes which encode for the toxic secondary metabolite, destruxin, which suppresses the innate immunity of insects during the fungal pathogenesis and aids the fungus to take over the host body. Nevertheless, it was recently shown that the host range of M. acridum can be expanded by transforming it with Mest1 gene, encoding an esterase, from M. anisopliae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anand R, Tiwary BN (2009) Pathogenicity of entomopathogenic fungi to eggs and larvae of Spodoptera litura, the common cutworm. Biocontrol Sci Technol 19:919–929

    Article  Google Scholar 

  • Anand R, Prasad B, Tiwary BN (2009) Relative susceptibility of Spodoptera litura pupae to selected entomopathogenic fungi. Biocontrol 54:85–92

    Article  Google Scholar 

  • Bechara IJ, Destefano RHR, Bresil C, Messias CL (2011) Histopathological events and detection of Metarhizium anisopliae using specific primers in infected immature stages of the fruit fly Anastrepha fraterculus (Wiedemann, 1830) (Diptera: Tephritidae). Braz J Biol 71:91–98

    Article  CAS  PubMed  Google Scholar 

  • Bischoff JF, Rehner SA, Humber RA (2009) A multilocus phylogeny of the Metarhizium anisopliae lineage. Mycologia 101:512–530

    Article  CAS  PubMed  Google Scholar 

  • Contreras J, Mendoza JE, Martínez-Aguirre MR, García-Vidal L, Izquierdo J, Bielza P (2014) Efficacy of enthomopathogenic fungus Metarhizium anisopliae against Tuta absoluta (Lepidoptera: Gelechiidae). J Econ Entomol 107:121–124

    Article  CAS  PubMed  Google Scholar 

  • da Silva MV, Santi L, Staats CC, da Costa AM, Colodel EM, Driemeier D, Vainstein MH, Schrank A (2005) Cuticle-induced endo/exoacting chitinase CHIT30 from Metarhizium anisopliae is encoded by an ortholog the chi3 gene. Res Microbiol 156:382–392

    Article  PubMed  Google Scholar 

  • Driver F, Milner JR, Trueman HWJ (2000) A taxonomic revision of Metarhizium based on a phylogenetic analysis of rDNA sequence data. Mycol Res 104:134–150

    Article  CAS  Google Scholar 

  • Duan ZB, Shang YF, Gao Q, Zheng P, Wang CS (2009) A phosphoketolase Mpk1 of bacterial origin is adaptively required for full virulence in the insect-pathogenic fungus Metarhizium anisopliae. Environ Microbiol 11:2351–2360

    Article  CAS  PubMed  Google Scholar 

  • Dumas C, Rober P, Pais M, Vey A, Quiot JM (1994) Insecticidal and cytotoxic effects of natural and hemisynthetic destruxins. Comp Biochem Physiol C 108:195–203

    Article  CAS  Google Scholar 

  • Fang W, Pei Y, Bidochka MJ (2007) A regulator of a G protein signalling (RGS) gene, cag8, from the insect-pathogenic fungus Metarhizium anisopliae is involved in conidiation, virulence and hydrophobin synthesis. Microbiology 153:1017–1025

    Article  CAS  PubMed  Google Scholar 

  • Fang W, Fernandes EK, Roberts DW, Bidochka MJ, St. Leger RJ (2010) A laccase exclusively expressed by Metarhizium anisopliae during isotropic growth is involved in pigmentation, tolerance to abiotic stresses and virulence. Fungal Genet Biol 47:602–607

    Article  CAS  PubMed  Google Scholar 

  • Freimoser FM, Screen S, Bagga S, Hu G, St Leger RJ (2003) Expressed sequence tag (EST) analysis of two subspecies of Metarhizium anisopliae reveals a plethora of secreted proteins with potential activity in insect hosts. Microbiology 149:239–247

    Article  CAS  PubMed  Google Scholar 

  • Gao Q, Jin K, Ying SH, Zhang Y, Xiao G et al (2011) Genome sequencing and comparative transcriptomics of the model entomopathogenic fungi Metarhizium anisopliae and M. acridum. PLoS Genet 7:e1001264

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Garcia GC, Berenice GMM, Nestor BM (2011) Pathogenicity of isolates of entomopathogenic fungi against Spodoptera frugiperda (Lepidoptera: Noctuidae) and Epilachna varivestis (Coleoptera: Coccinellidae). Rev Colomb Entomol 37:217–222

    Google Scholar 

  • Hajek A (2004) Natural enemies: an introduction to biological control. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Ingle YV, Lande SK, Burgoni GK, Autkar SS (2004) Natural epizootic of Nomuraea rileyi on lepidopterous pests of soybean and green gram. J Appl Zool Res 15:160–162

    Google Scholar 

  • Kershaw MJ, Moorhouse ER, Bateman RP, Reynolds SE, Charnley AK (1999) The role of destruxins in the pathogenicity of Metarhizium anisopliae for three species of insect. J Invertebr Pathol 74:213–223

    Article  CAS  PubMed  Google Scholar 

  • Kleespies RG, Huger AM, Zimmermann G (2008) Diseases of insects and other arthropods: results of diagnostic research over 55 years. Biocontrol Sci Technol 18:439–484

    Article  Google Scholar 

  • Kodaira Y (1961) Biochemical studies on the muscardine fungi in the silkworms, Bombyx mori L. J Fac Text Sci Technol Sinshu Univ 5:1–68

    Google Scholar 

  • Liu BL, Tzeng YM (2012) Development and applications of destruxins: a review. Biotechnol Adv 30:1242–1254

    Article  CAS  PubMed  Google Scholar 

  • Padmaja V, Sree KS (2008) Role of mycotoxin from the entomopathogenic fungus, Metarhizium anisopliae for insect pest management- current status. In: Ignacimuthu sj S, Jayaraj S (eds) Recent trends in insect pest management. Elite Publishers, New Delhi, pp 146–154

    Google Scholar 

  • Pal S, St. Leger RJ, Wu LP (2007) Fungal peptide destruxin a plays a specific role in suppressing the innate immune response in Drosophila melanogaster. J Biol Chem 282:8969–8977

    Article  CAS  PubMed  Google Scholar 

  • Pandey R, Hasan W (2009) Pathogenicity of entomopathogenic fungi, Metarhizium anisopliae against tobacco caterpillar, Spodoptera litura (Fabricius). Trends Biosci 2:29–30

    Google Scholar 

  • Pedras MSC, Irina ZL, Ward DE (2002) The destruxins: synthesis, biosynthesis, biotransformation and biological activity. Phytochemistry 59:579–596

    Article  CAS  PubMed  Google Scholar 

  • Peng GX, Wang ZK, Yin YP, Zeng DY, Xia YX (2008) Field trials of Metarhizium anisopliae var. acridum (Ascomycota: Hypocreales) against oriental migratory locusts, Locusta migratoria manilensis (Meyen) in Northern China. Crop Prot 27:1244–1250

    Article  Google Scholar 

  • Schrank A, Vainstein MH (2010) Metarhizium anisopliae enzymes and toxins. Toxicon 56:1267–1274

    Article  CAS  PubMed  Google Scholar 

  • Screen SE, St. Leger RJ (2000) Cloning, expression, and substrate specificity of a fungal chymotrypsin. Evidence for lateral gene transfer from an actinomycete bacterium. J Biol Chem 275:6689–6694

    Article  CAS  PubMed  Google Scholar 

  • Sree KS, Padmaja V (2008) Oxidative stress induced by destruxin from Metarhizium anisopliae (Metch.) involves changes in glutathione and ascorbate metabolism and instigates ultrastructural changes in the salivary glands of Spodoptera litura (Fab.) larvae. Toxicon 51:1140–1150

    Article  CAS  Google Scholar 

  • Sree KS, Padmaja V, Murthy LNY (2008) Insecticidal activity of destruxin, a mycotoxin from Metarhizium anisopliae (Hypocreales), against Spodoptera litura (Lepidoptera: Noctuidae) larval stages. Pest Manag Sci 64:119–125

    Article  CAS  Google Scholar 

  • Sree KS, Sachdev B, Padmaja V, Bhatnagar RK (2010) Electron spin resonance spectroscopic studies of free radical generation and tissue specific catalase gene expression in Spodoptera litura (Fab.) larvae treated with the mycotoxin, destruxin. Pestic Biochem Physiol 97:168–176

    Article  CAS  Google Scholar 

  • St. Leger RJ (2008) Studies on adaptations of Metarhizium anisopliae to life in the soil. J Invertebr Pathol 98:271–276

    Article  PubMed  Google Scholar 

  • Suzuki A, Taguchi H, Tamura S (1970) Isolation and structure elucidation of three new insecticidal cyclodepsipeptides, destruxin C, D and desmethyl-destruxin B, produced by Metarhizium anisopliae. Agric Biol Chem 34:813–816

    Article  CAS  Google Scholar 

  • Thomas MB, Read AF (2007) Can fungal biopesticides control malaria? Nat Rev Microbiol 5:377–383

    Article  CAS  PubMed  Google Scholar 

  • Wang C, St. Leger RJ (2006) A collagenous protective coat enables Metarhizium anisopliae to evade insect immune responses. Proc Natl Acad Sci USA 103:6647–6652

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang C, St. Leger RJ (2007a) The MAD1 adhesin of Metarhizium anisopliae links adhesion with blastospore production and virulence to insects, and the MAD2 adhesin enables attachment to plants. Eukaryot Cell 6:808–816

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang C, St. Leger RJ (2007b) The Metarhizium anisopliae perilipin homolog MPL1 regulates lipid metabolism, appressorial turgor pressure, and virulence. J Biol Chem 282:21110–21115

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Butt TM, St. Leger RJ (2005) Colony sectorization of Metarhizium anisopliae is a sign of ageing. Microbiology 151:3223–3236

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Fang W, Wang CS, St Leger RJ (2011) Insertion of an esterase gene into a specific locust pathogen (Metarhizium acridum) enables it to infect caterpillars. PLoS Pathog 7:e1002097

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang B, Kang Q, Lu Y, Bai L, Wang C (2012) Unveiling the biosynthetic puzzle of destruxins in Metarhizium species. Proc Natl Acad Sci USA 109:1287–1292

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zimmerman G (2007) Review on safety of the entomopathogenic fungus Metarhizium anisopliae. Biocontrol Sci Technol 17:879–920

    Article  Google Scholar 

  • Zimmermann G (1993) The entomopathogenic fungus Metarhizium anisopliae and its potential as a biocontrol agent. Pestic Sci 37:375–379

    Article  Google Scholar 

  • Zimmermann G (2008) The entomopathogenic fungi Isaria farinosa (formerly Paecilomyces farinosus) and the Isaria fumosorosea species complex (formerly Paecilomyces fumosoroseus): biology, ecology and use in biological control. Biocontrol Sci Technol 18:865–901

    Article  Google Scholar 

Download references

Acknowledgements

KSS is grateful to SERB, Govt. of India, for financial assistance through the Fast Track Young Scientist scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sowjanya Sree .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sree, K.S., Joshi, H. (2015). Comparative Account of Generalist and Specialist Species of the Entomopathogenic Fungus, Metarhizium . In: Sree, K., Varma, A. (eds) Biocontrol of Lepidopteran Pests. Soil Biology, vol 43. Springer, Cham. https://doi.org/10.1007/978-3-319-14499-3_7

Download citation

Publish with us

Policies and ethics