Advertisement

A Scalable Runtime Platform for Multiagent-Based Simulation

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8758)

Abstract

Using purely agent-based platforms for any kind of simulation requires to address the following challenges: (1) scalability (efficient scheduling of agent cycles is difficult), (2) efficient memory management (when and which data should be fetched, cached, or written to/from disk), and (3) modelling (no generally accepted meta-models exist: what are essential concepts, what just implementation details?). While dedicated professional simulation tools usually provide rich domain libraries and advanced visualisation techniques, and support the simulation of large scenarios, they do not allow for “agentization” of single components. We are trying to bridge this gap by developing a distributed, scalable runtime platform for multiagent simulation, MASeRaTi, addressing the three problems mentioned above. It allows to plug-in both dedicated simulation tools (for the macro view) as well as the agentization of certain components of the system (to allow a micro view). If no agent-related features are used, its performance should be as close as possible to the legacy system used.

Keywords

Technological or Methodological 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahlbrecht, T., Dix, J., Köster, M., Kraus, P., Müller, J.P.: A scalable runtime platform for multiagent-based simulation. Technical Report IfI-14-02, TU Clausthal (February 2014)Google Scholar
  2. 2.
    Ahlbrecht, T., Dix, J., Köster, M., Schlesinger, F.: Multi-Agent Programming Contest 2013. In: Cossentino, M., El Fallah Seghrouchni, A., Winikoff, M. (eds.) EMAS 2013. LNCS (LNAI), vol. 8245, pp. 292–318. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  3. 3.
    Behrens, T.: Towards Building Blocks for Agent-Oriented Programming. PhD thesis, Clausthal University of Technology (2012)Google Scholar
  4. 4.
    Behrens, T., Dastani, M., Dix, J., Köster, M., Novák, P.: The Multi-Agent Programming Contest from 2005-2010. Annals of Mathematics and Artificial Intelligence 59, 277–311 (2010)CrossRefGoogle Scholar
  5. 5.
    Behrens, T.M., Dix, J., Dastani, M., Köster, M., Novák, P.: Technical Foundations of the Agent Contest 2008. Technical Report IfI-08-05, Clausthal University of Technology (December 2008)Google Scholar
  6. 6.
    Bordini, R.H., Dastani, M., Dix, J., El Fallah-Seghrouchni, A. (eds.): Multi-Agent Programming: Languages, Tools and Applications. Springer, Berlin (2009)Google Scholar
  7. 7.
    Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming multi-agent systems in AgentSpeak using Jason. Wiley & Sons (2007)Google Scholar
  8. 8.
    Chu, V.-H., Görmer, J., Müller, J.P.: ATSim: Combining AIMSUN and Jade for agent-based traffic simulation. In: Proceedings of the 14th Conference of the Spanish Association for Artificial Intelligence (CAEPIA), vol. 1, AEPIA (2011), Electronic ProceedingsGoogle Scholar
  9. 9.
    Dávila, J., Uzcátegui, M.: Galatea: A multi-agent simulation platform. In: Proceedings of the International Conference on Modeling, Simulation and Neural Networks (2000)Google Scholar
  10. 10.
    Driel, M., Kraaijeveld, J., Shao, Z.K., van der Zon, R.: A Survey on MMOG System Architectures (2011)Google Scholar
  11. 11.
    Fiosins, M., Fiosina, J., Müller, J.P., Görmer, J.: Reconciling Strategic and Tactical Decision Making in Agent-oriented Simulation of Vehicles in Urban Traffic. In: Proceedings of the 4th International ICST Conference on Simulation Tools and Techniques, SIMUTools 2011, pp. 144–151. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), Brussels (2011)Google Scholar
  12. 12.
    Fiosins, M., Fiosina, J., Müller, J.P., Görmer, J.: Agent-Based Integrated Decision Making for Autonomous Vehicles in Urban Traffic. In: Demazeau, Y., Pechoucek, M., Corchado, J.M., Perez, J.B. (eds.) Adv. on Prac. Appl. of Agents and Mult. Sys. AISC, vol. 88, pp. 173–178. Springer, Heidelberg (2011)Google Scholar
  13. 13.
    Garro, A., Russo, W.: easyABMS: A domain-expert oriented methodology for agent-based modeling and simulation. Simulation Modelling Practice and Theory 18(10), 1453–1467 (2010)CrossRefGoogle Scholar
  14. 14.
    Gehrke, J.D., Ober-Blöbaum, C.: Multiagent-based Logistics Simulation with PlaSMA. In: Informatik 2007 - Informatik trifft Logistik, Band 1. Beiträge der 37. Jahrestagung der Gesellschaft für Informatik, pp. 416–419. Technologie-Zentrum Informatik (2007)Google Scholar
  15. 15.
    Ghorbani, A., Bots, P.W.G., Dignum, V., Dijkema, G.P.J.: MAIA: A Framework for Developing Agent-Based Social Simulations. J. Artificial Societies and Social Simulation 16(2) (2013)Google Scholar
  16. 16.
    Görmer, J., Müller, J.P.: Group Coordination for Agent-Oriented Urban Traffic Management. In: Demazeau, Y., Müller, J.P., Rodríguez, J.M.C., Pérez, J.B. (eds.) Advances on PAAMS. AISC, vol. 155, pp. 245–248. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  17. 17.
    Helbing, D., Hennecke, A., Shvetsov, V., Treiber, M.: MASTER: Macroscopic traffic simulation based on a gas-kinetic, non-local traffic model. Transportation Research Part B: Methodological 35(2), 183–211 (2001)CrossRefGoogle Scholar
  18. 18.
    Hill, M.D., Marty, M.R.: Amdahl’s Law in the Multicore Era. Computer 41(7), 33–38 (2008)CrossRefGoogle Scholar
  19. 19.
    Huhn, M., Müller, J.P., Görmer, J., Homoceanu, G., Le, N.-T., Märtin, L., Mumme, C., Schulz, C., Pinkwart, N., Müller-Schloer, C.: Autonomous agents in organized localities regulated by institutions. In: 2011 Proceedings of the 5th IEEE International Conference on Digital Ecosystems and Technologies (DEST), pp. 54–61 (May 2011)Google Scholar
  20. 20.
    Ierusalimschy, R.: Programming with multiple paradigms in lua. In: Escobar, S. (ed.) WFLP 2009. LNCS, vol. 5979, pp. 1–12. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  21. 21.
    Klügl, F., Davidsson, P.: AMASON: Abstract Meta-model for Agent-Based SimulatiON. In: Klusch, M., Thimm, M., Paprzycki, M. (eds.) MATES 2013. LNCS, vol. 8076, pp. 101–114. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  22. 22.
    Klügl, F., Puppe, F.: The Multi-Agent Simulation Environment SeSAm. In: Kleine Büning, H. (ed.) Proceedings of Simulation in Knowledge-based Systems, Universität Paderborn, Reihe Informatik, Universität Paderborn, Universität Paderborn (April 1998)Google Scholar
  23. 23.
    Krajzewicz, D., Hertkorn, G., Rössel, C., Wagner, P.: Sumo (simulation of urban mobility). In: Proc. of the 4th Middle East Symposium on Simulation and Modelling, pp. 183–187 (2002)Google Scholar
  24. 24.
    Kuhl, F., Dahmann, J., Weatherly, R.: Creating computer simulation systems: An introduction to the high level architecture. Prentice Hall PTR Englewood Cliffs, Upper Saddle River (2000)Google Scholar
  25. 25.
    Ierusalimschy, R., de Figueiredo, L.H., Celes, W.: Lua Programming Gems. Roberto Ierusalimschy (2008)Google Scholar
  26. 26.
    Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K.: Mason: A new multi-agent simulation toolkit. In: Proceedings of the 2004 SwarmFest Workshop, vol. 8 (2004)Google Scholar
  27. 27.
    Papageorgiou, M., Blosseville, J.-M., Hadj-Salem, H.: Modelling and real-time control of traffic flow on the southern part of Boulevard Peripherique in Paris: Part I: Modelling. Transportation Research Part A: General 24(5), 345–359 (1990)CrossRefGoogle Scholar
  28. 28.
    Shoham, Y.: Agent-Oriented Programming. Artificial Intelligence 60(1), 51–92 (1993)CrossRefMathSciNetGoogle Scholar
  29. 29.
    Subrahmanian, V.S., Bonatti, P., Dix, J., Eiter, T., Kraus, S., Özcan, F., Ross, R.: Heterogenous Active Agents. MIT Press (2000)Google Scholar
  30. 30.
    Tisue, S., Wilensky, U.: NetLogo: A simple environment for modeling complexity. In: International Conference on Complex Systems, pp. 16–21 (2004)Google Scholar
  31. 31.
    Weiss, G. (ed.): Multiagent systems. MIT-Press (2013)Google Scholar
  32. 32.
    Wooldridge, M.J.: An Introduction to MultiAgent Systems (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of InformaticsClausthal University of TechnologyClausthal-ZellerfeldGermany

Personalised recommendations