Skip to main content

A Scalable Runtime Platform for Multiagent-Based Simulation

  • Conference paper
Engineering Multi-Agent Systems (EMAS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8758))

Included in the following conference series:

Abstract

Using purely agent-based platforms for any kind of simulation requires to address the following challenges: (1) scalability (efficient scheduling of agent cycles is difficult), (2) efficient memory management (when and which data should be fetched, cached, or written to/from disk), and (3) modelling (no generally accepted meta-models exist: what are essential concepts, what just implementation details?). While dedicated professional simulation tools usually provide rich domain libraries and advanced visualisation techniques, and support the simulation of large scenarios, they do not allow for “agentization” of single components. We are trying to bridge this gap by developing a distributed, scalable runtime platform for multiagent simulation, MASeRaTi, addressing the three problems mentioned above. It allows to plug-in both dedicated simulation tools (for the macro view) as well as the agentization of certain components of the system (to allow a micro view). If no agent-related features are used, its performance should be as close as possible to the legacy system used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ahlbrecht, T., Dix, J., Köster, M., Kraus, P., Müller, J.P.: A scalable runtime platform for multiagent-based simulation. Technical Report IfI-14-02, TU Clausthal (February 2014)

    Google Scholar 

  2. Ahlbrecht, T., Dix, J., Köster, M., Schlesinger, F.: Multi-Agent Programming Contest 2013. In: Cossentino, M., El Fallah Seghrouchni, A., Winikoff, M. (eds.) EMAS 2013. LNCS (LNAI), vol. 8245, pp. 292–318. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  3. Behrens, T.: Towards Building Blocks for Agent-Oriented Programming. PhD thesis, Clausthal University of Technology (2012)

    Google Scholar 

  4. Behrens, T., Dastani, M., Dix, J., Köster, M., Novák, P.: The Multi-Agent Programming Contest from 2005-2010. Annals of Mathematics and Artificial Intelligence 59, 277–311 (2010)

    Article  Google Scholar 

  5. Behrens, T.M., Dix, J., Dastani, M., Köster, M., Novák, P.: Technical Foundations of the Agent Contest 2008. Technical Report IfI-08-05, Clausthal University of Technology (December 2008)

    Google Scholar 

  6. Bordini, R.H., Dastani, M., Dix, J., El Fallah-Seghrouchni, A. (eds.): Multi-Agent Programming: Languages, Tools and Applications. Springer, Berlin (2009)

    Google Scholar 

  7. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming multi-agent systems in AgentSpeak using Jason. Wiley & Sons (2007)

    Google Scholar 

  8. Chu, V.-H., Görmer, J., Müller, J.P.: ATSim: Combining AIMSUN and Jade for agent-based traffic simulation. In: Proceedings of the 14th Conference of the Spanish Association for Artificial Intelligence (CAEPIA), vol. 1, AEPIA (2011), Electronic Proceedings

    Google Scholar 

  9. Dávila, J., Uzcátegui, M.: Galatea: A multi-agent simulation platform. In: Proceedings of the International Conference on Modeling, Simulation and Neural Networks (2000)

    Google Scholar 

  10. Driel, M., Kraaijeveld, J., Shao, Z.K., van der Zon, R.: A Survey on MMOG System Architectures (2011)

    Google Scholar 

  11. Fiosins, M., Fiosina, J., Müller, J.P., Görmer, J.: Reconciling Strategic and Tactical Decision Making in Agent-oriented Simulation of Vehicles in Urban Traffic. In: Proceedings of the 4th International ICST Conference on Simulation Tools and Techniques, SIMUTools 2011, pp. 144–151. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), Brussels (2011)

    Google Scholar 

  12. Fiosins, M., Fiosina, J., Müller, J.P., Görmer, J.: Agent-Based Integrated Decision Making for Autonomous Vehicles in Urban Traffic. In: Demazeau, Y., Pechoucek, M., Corchado, J.M., Perez, J.B. (eds.) Adv. on Prac. Appl. of Agents and Mult. Sys. AISC, vol. 88, pp. 173–178. Springer, Heidelberg (2011)

    Google Scholar 

  13. Garro, A., Russo, W.: easyABMS: A domain-expert oriented methodology for agent-based modeling and simulation. Simulation Modelling Practice and Theory 18(10), 1453–1467 (2010)

    Article  Google Scholar 

  14. Gehrke, J.D., Ober-Blöbaum, C.: Multiagent-based Logistics Simulation with PlaSMA. In: Informatik 2007 - Informatik trifft Logistik, Band 1. Beiträge der 37. Jahrestagung der Gesellschaft für Informatik, pp. 416–419. Technologie-Zentrum Informatik (2007)

    Google Scholar 

  15. Ghorbani, A., Bots, P.W.G., Dignum, V., Dijkema, G.P.J.: MAIA: A Framework for Developing Agent-Based Social Simulations. J. Artificial Societies and Social Simulation 16(2) (2013)

    Google Scholar 

  16. Görmer, J., Müller, J.P.: Group Coordination for Agent-Oriented Urban Traffic Management. In: Demazeau, Y., Müller, J.P., Rodríguez, J.M.C., Pérez, J.B. (eds.) Advances on PAAMS. AISC, vol. 155, pp. 245–248. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  17. Helbing, D., Hennecke, A., Shvetsov, V., Treiber, M.: MASTER: Macroscopic traffic simulation based on a gas-kinetic, non-local traffic model. Transportation Research Part B: Methodological 35(2), 183–211 (2001)

    Article  Google Scholar 

  18. Hill, M.D., Marty, M.R.: Amdahl’s Law in the Multicore Era. Computer 41(7), 33–38 (2008)

    Article  Google Scholar 

  19. Huhn, M., Müller, J.P., Görmer, J., Homoceanu, G., Le, N.-T., Märtin, L., Mumme, C., Schulz, C., Pinkwart, N., Müller-Schloer, C.: Autonomous agents in organized localities regulated by institutions. In: 2011 Proceedings of the 5th IEEE International Conference on Digital Ecosystems and Technologies (DEST), pp. 54–61 (May 2011)

    Google Scholar 

  20. Ierusalimschy, R.: Programming with multiple paradigms in lua. In: Escobar, S. (ed.) WFLP 2009. LNCS, vol. 5979, pp. 1–12. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  21. Klügl, F., Davidsson, P.: AMASON: Abstract Meta-model for Agent-Based SimulatiON. In: Klusch, M., Thimm, M., Paprzycki, M. (eds.) MATES 2013. LNCS, vol. 8076, pp. 101–114. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  22. Klügl, F., Puppe, F.: The Multi-Agent Simulation Environment SeSAm. In: Kleine Büning, H. (ed.) Proceedings of Simulation in Knowledge-based Systems, Universität Paderborn, Reihe Informatik, Universität Paderborn, Universität Paderborn (April 1998)

    Google Scholar 

  23. Krajzewicz, D., Hertkorn, G., Rössel, C., Wagner, P.: Sumo (simulation of urban mobility). In: Proc. of the 4th Middle East Symposium on Simulation and Modelling, pp. 183–187 (2002)

    Google Scholar 

  24. Kuhl, F., Dahmann, J., Weatherly, R.: Creating computer simulation systems: An introduction to the high level architecture. Prentice Hall PTR Englewood Cliffs, Upper Saddle River (2000)

    Google Scholar 

  25. Ierusalimschy, R., de Figueiredo, L.H., Celes, W.: Lua Programming Gems. Roberto Ierusalimschy (2008)

    Google Scholar 

  26. Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K.: Mason: A new multi-agent simulation toolkit. In: Proceedings of the 2004 SwarmFest Workshop, vol. 8 (2004)

    Google Scholar 

  27. Papageorgiou, M., Blosseville, J.-M., Hadj-Salem, H.: Modelling and real-time control of traffic flow on the southern part of Boulevard Peripherique in Paris: Part I: Modelling. Transportation Research Part A: General 24(5), 345–359 (1990)

    Article  Google Scholar 

  28. Shoham, Y.: Agent-Oriented Programming. Artificial Intelligence 60(1), 51–92 (1993)

    Article  MathSciNet  Google Scholar 

  29. Subrahmanian, V.S., Bonatti, P., Dix, J., Eiter, T., Kraus, S., Özcan, F., Ross, R.: Heterogenous Active Agents. MIT Press (2000)

    Google Scholar 

  30. Tisue, S., Wilensky, U.: NetLogo: A simple environment for modeling complexity. In: International Conference on Complex Systems, pp. 16–21 (2004)

    Google Scholar 

  31. Weiss, G. (ed.): Multiagent systems. MIT-Press (2013)

    Google Scholar 

  32. Wooldridge, M.J.: An Introduction to MultiAgent Systems (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Ahlbrecht, T., Dix, J., Köster, M., Kraus, P., M”uller, J.P. (2014). A Scalable Runtime Platform for Multiagent-Based Simulation. In: Dalpiaz, F., Dix, J., van Riemsdijk, M.B. (eds) Engineering Multi-Agent Systems. EMAS 2014. Lecture Notes in Computer Science(), vol 8758. Springer, Cham. https://doi.org/10.1007/978-3-319-14484-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14484-9_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14483-2

  • Online ISBN: 978-3-319-14484-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics