Keeping a Clear Separation between Goals and Plans

  • Costin Caval
  • Amal El Fallah Seghrouchni
  • Patrick Taillibert
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8758)


Many approaches to BDI agent modeling permit the agent developers to interweave the levels of plans and goals. This is possible through the adoption of new goals inside plans. These goals will have plans of their own, and the definition can extend on many levels. From a software development point of view, the resulting complexity can render the agents’ behavior difficult to trace, due to the combination of elements from different abstraction levels, i.e., actions and goal adoptions. This has a negative effect on the development process when designing and debugging agents. In this paper we propose a change of approach that aims to provide a more comprehensible agent model with benefits for the ease of engineering and the fault tolerance of agent systems. This is achieved by imposing a clear separation between the reasoning and the acting levels of the agent. The use of goal adoptions and actions on the environment inside the same plan is therefore forbidden. The approach is illustrated using two theoretical scenarios as well as an agent-based maritime patrol application. We argue that by constraining the agent model we gain in clarity and traceability therefore benefiting the development process and encouraging the adoption of agent-based techniques in industrial contexts.


goal directed agents goal reasoning goal-plan tree 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rao, A.S., Georgeff, M.P.: BDI-agents: From theory to practice. In: Proceedings of the First International Conference on Multiagent Systems, pp. 312–319. AAAI Press, San Francisco (1995)Google Scholar
  2. 2.
    Braubach, L., Pokahr, A., Moldt, D., Lamersdorf, W.: Goal representation for BDI agent systems. In: Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.) PROMAS 2004. LNCS (LNAI), vol. 3346, pp. 44–65. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Harland, J., Morley, D.N., Thangarajah, J., Yorke-Smith, N.: An operational semantics for the goal life-cycle in BDI agents. Autonomous Agents and Multi-Agent Systems 28(4), 682–719 (2014)CrossRefGoogle Scholar
  4. 4.
    Thangarajah, J., Padgham, L.: Computationally effective reasoning about goal interactions. Journal of Automated Reasoning 47(1), 17–56 (2011)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Bordini, R., Hübner, J., Vieira, R.: Jason and the golden fleece of agent-oriented programming. In: Bordini, R., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.) Multi-Agent Programming. Multiagent Systems, Artificial Societies, and Simulated Organizations, vol. 15, pp. 3–37. Springer US (2005)Google Scholar
  6. 6.
    Braubach, L., Pokahr, A., Lamersdorf, W.: Jadex: A short overview. In: Net.ObjectDays 2004: AgentExpo. (2004)Google Scholar
  7. 7.
    Sardina, S., Padgham, L.: A BDI agent programming language with failure handling, declarative goals, and planning. Autonomous Agents and Multi-Agent Systems 23(1), 18–70 (2011)CrossRefGoogle Scholar
  8. 8.
    Giunchiglia, F., Mylopoulos, J., Perini, A.: The tropos software development methodology: Processes, models and diagrams. In: Giunchiglia, F., Odell, J.J., Weiß, G. (eds.) AOSE 2002. LNCS, vol. 2585, pp. 162–173. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Winikoff, M., Padgham, L.: Developing Intelligent Agent Systems: A Practical Guide. Wiley Series in Agent Technology. John Wiley and Sons (2004)Google Scholar
  10. 10.
    Hindriks, K.V., de Boer, F.S., van der Hoek, W., Meyer, J.-J.C.: Agent programming with declarative goals. In: Castelfranchi, C., Lespérance, Y. (eds.) Intelligent Agents VII. LNCS (LNAI), vol. 1986, pp. 228–243. Springer, Heidelberg (2001)Google Scholar
  11. 11.
    Winikoff, M., Padgham, L., Harland, J., Thangarajah, J.: Declarative and procedural goals in intelligent agent systems. In: Proceedings of the 8th International Conference on Principles of Knowledge Representation and Reasoning, pp. 470–481. Morgan Kaufman, Toulouse (2002)Google Scholar
  12. 12.
    Dastani, M., van Riemsdijk, M.B., Dignum, F., Meyer, J.-J.C.: A programming language for cognitive agents goal directed 3APL. In: Dastani, M. M., Dix, J., El Fallah Seghrouchni, A. (eds.) PROMAS 2003. LNCS (LNAI), vol. 3067, pp. 111–130. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Thangarajah, J.: Managing the Concurrent Execution of Goals in Intelligent Agents. PhD thesis, RMIT University, Melbourne, Australia (2005)Google Scholar
  14. 14.
    Morandini, M., Penserini, L., Perini, A.: Operational semantics of goal models in adaptive agents. In: Proceedings of the 8th International Conference on Autonomous Agents and Multiagent Systems, vol. 1, pp. 129–136. International Foundation for Autonomous Agents and Multiagent Systems, Budapest (2009)Google Scholar
  15. 15.
    Thangarajah, J., Sardina, S., Padgham, L.: Measuring plan coverage and overlap for agent reasoning. In: Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems, vol. 2, pp. 1049–1056. International Foundation for Autonomous Agents and Multiagent Systems, Valencia (2012)Google Scholar
  16. 16.
    Chaouche, A.C., El Fallah Seghrouchni, A., Ilie, J.M., Sadouni, D.E.: A higher-order agent model for ambient systems. Procedia Computer Science 21(0), 156–163 (2013), The 4th International Conference on Emerging Ubiquitous Systems and Pervasive Networks and the 3rd International Conference on Current and Future Trends of Information and Communication Technologies in HealthcareGoogle Scholar
  17. 17.
    Berthomieu, B., Diaz, M.: Modeling and verification of time dependent systems using time petri nets. IEEE Transactions on Software Engineering 17(3), 259–273 (1991)CrossRefMathSciNetGoogle Scholar
  18. 18.
    El Fallah Seghrouchni, A., Haddad, S.: A recursive model for distributed planning. In: Proceedings of the 2nd International Conference on Multi-Agent Systems, pp. 307–314. AAAI Press, Kyoto (1996)Google Scholar
  19. 19.
    Omicini, A., Ricci, A., Viroli, M.: Artifacts in the a&a meta-model for multi-agent systems. Autonomous Agents and Multi-Agent Systems 17(3), 432–456 (2008)CrossRefGoogle Scholar
  20. 20.
    Torres-Pomales, W.: Software fault tolerance: A tutorial. Technical report, NASA Langley Research Center, Hampton, Virginia, USA (2000)Google Scholar
  21. 21.
    van Riemsdijk, M.B., Yorke-Smith, N.: Towards reasoning with partial goal satisfaction in intelligent agents. In: Collier, R., Dix, J., Novák, P. (eds.) ProMAS 2010. LNCS, vol. 6599, pp. 41–59. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  22. 22.
    Pokahr, A., Braubach, L., Lamersdorf, W.: A goal deliberation strategy for BDI agent systems. In: Eymann, T., Klügl, F., Lamersdorf, W., Klusch, M., Huhns, M.N. (eds.) MATES 2005. LNCS (LNAI), vol. 3550, pp. 82–93. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  23. 23.
    Shaw, P., Bordini, R.H.: Towards alternative approaches to reasoning about goals. In: Baldoni, M., Son, T.C., van Riemsdijk, M.B., Winikoff, M. (eds.) DALT 2007. LNCS (LNAI), vol. 4897, pp. 104–121. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  24. 24.
    Shaw, P., Bordini, R.H.: An alternative approach for reasoning about the goal-plan tree problem. In: Dastani, M., El Fallah Seghrouchni, A., Hübner, J., Leite, J. (eds.) LADS 2010. LNCS (LNAI), vol. 6822, pp. 115–135. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  25. 25.
    Shapiro, S., Sardina, S., Thangarajah, J., Cavedon, L., Padgham, L.: Revising conflicting intention sets in BDI agents. In: Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems, vol. 2, pp. 1081–1088. International Foundation for Autonomous Agents and Multiagent Systems, Valencia (2012)Google Scholar
  26. 26.
    Singh, D., Sardina, S., Padgham, L., James, G.: Integrating learning into a BDI agent for environments with changing dynamics. In: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, vol. 3, pp. 2525–2530. AAAI Press, Barcelona (2011)Google Scholar
  27. 27.
    Morley, D.N., Myers, K.L., Yorke-Smith, N.: Continuous refinement of agent resource estimates. In: Proceedings of the Fifth International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 858–865. ACM, Hakodate (2006)CrossRefGoogle Scholar
  28. 28.
    Clement, B.J., Durfee, E.H., Barrett, A.C.: Abstract reasoning for planning and coordination. Journal of Artificial Intelligence Research 28(1), 453–515 (2007)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Costin Caval
    • 1
    • 2
  • Amal El Fallah Seghrouchni
    • 1
  • Patrick Taillibert
    • 1
  1. 1.LIP6ParisFrance
  2. 2.Thales Airborne SystemsElancourtFrance

Personalised recommendations