Advertisement

Infinite States Verification in Game-Theoretic Logics: Case Studies and Implementation

  • Slawomir Kmiec
  • Yves Lespérance
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8758)

Abstract

Many practical problems where the environment is not in the system’s control can be modelled in game-theoretic logics (e.g., ATL). But most work on verification methods for such logics is restricted to finite state cases. De Giacomo, Lespérance, and Pearce have proposed a situation calculus-based logical framework for representing such infinite state game-type problems together with a verification method based on fixpoint approximates and regression. Here, we extend this line of work. Firstly, we describe some case studies to evaluate the method. We specify some example domains and show that the method does allow us to verify various properties. We also find some examples where the method must be extended to exploit information about the initial state and state constraints in order to work. Secondly, we describe an evaluation-based Prolog implementation of a version of the method for complete initial state theories with the closed world assumption. It generates successive approximates and checks if they hold in the situation of interest.We describe some preliminary experiments with this tool and discuss its limitations.

Keywords

Multiagent System Theorem Prove Winning Strategy Initial Situation Strategic Preference 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J. ACM 49(5), 672–713 (2002)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Belardinelli, F., Lomuscio, A., Patrizi, F.: An abstraction technique for the verification of artifact-centric systems. In: Brewka, G., Eiter, T., McIlraith, S.A. (eds.) Principles of Knowledge Representation and Reasoning: Proceedings of the Thirteenth International Conference, KR 2012, Rome, Italy, June 10-14, pp. 319–328. AAAI Press (2012)Google Scholar
  3. 3.
    Biere, A.: Bounded model checking. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, pp. 457–481. IOS Press (2009)Google Scholar
  4. 4.
    Bradfield, J., Stirling, C.: Modal mu-calculi. In: Handbook of Modal Logic, vol. 3, pp. 721–756. Elsevier (2007)Google Scholar
  5. 5.
    Claßen, J., Lakemeyer, G.: A logic for non-terminating Golog programs. In: Brewka, G., Lang, J. (eds.) Principles of Knowledge Representation and Reasoning: Proceedings of the Eleventh International Conference, KR 2008, Sydney, Australia, September 16-19, pp. 589–599. AAAI Press (2008)Google Scholar
  6. 6.
    Claßen, J., Lakemeyer, G.: On the verification of very expressive temporal properties of non-terminating Golog programs. In: Coelho, H., Studer, R., Wooldridge, M. (eds.) Proceedings of 19th European Conference on Artificial Intelligence, ECAI 2010, Lisbon, Portugal, August 16-20, pp. 887–892. IOS Press (2010)Google Scholar
  7. 7.
    Claßen, J., Liebenberg, M., Lakemeyer, G.: On decidable verification of non-terminating Golog programs. In: Proceedings of the 10th International Workshop on Nonmonotonic Reasoning, Action and Change (NRAC 2013), Beijing, China, pp. 13–20 (2013)Google Scholar
  8. 8.
    De Giacomo, G., Lesperance, Y., Pearce, A.R.: Situation calculus-based programs for representing and reasoning about game structures. In: Lin, F., Sattler, U., Truszczynski, M. (eds.) Principles of Knowledge Representation and Reasoning: Proceedings of the Twelfth International Conference, KR 2010, Toronto, Ontario, Canada, May 9-13, pp. 445–455 (2010)Google Scholar
  9. 9.
    De Giacomo, G., Lespérance, Y., Levesque, H.J.: ConGolog, a concurrent programming language based on the situation calculus. Artificial Intelligence 121(1–2), 109–169 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    De Giacomo, G., Lespérance, Y., Patrizi, F.: Bounded Situation Calculus Action Theories and Decidable Verification. In: Brewka, G., Eiter, T., McIlraith, S.A. (eds.) Principles of Knowledge Representation and Reasoning: Proceedings of the Thirteenth International Conference, KR 2012, Rome, Italy, June 10-14, pp. 467–477. AAAI Press (2012)Google Scholar
  11. 11.
    Enderton, H.B.: A mathematical introduction to logic. Academic Press (1972)Google Scholar
  12. 12.
    Hamilton, A.G.: Numbers, Sets and Axioms: The Apparatus of Mathematics. Cambridge University Press (1982)Google Scholar
  13. 13.
    Kelly, R.F., Pearce, A.R.: Property persistence in the situation calculus. Artif. Intell. 174(12-13), 865–888 (2010)CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Kmiec, S.: Infinite States Verification in Game-Theoretic Logics. Master’s thesis, Dept. of Electrical Engineering and Computer Science, York University, Toronto, Canada (2013)Google Scholar
  15. 15.
    Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: A model checker for the verification of multi-agent systems. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 682–688. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    McCarthy, J., Hayes, P.: Some philosophical problems from the standpoint of artificial intelligence. In: Machine Intelligence, vol. 4, pp. 463–502. Edinburgh University Press (1969)Google Scholar
  17. 17.
    Park, D.: Finiteness is mu-ineffable. Theor. Comput. Sci. 3(2), 173–181 (1976)CrossRefGoogle Scholar
  18. 18.
    Reiter, R.: Knowledge in Action. Logical Foundations for Specifying and Implementing Dynamical Systems. MIT Press (2001)Google Scholar
  19. 19.
    Sardina, S., De Giacomo, G.: Composition of ConGolog programs. In: Boutilier, C. (ed.) IJCAI 2009, Proceedings of the 21st International Joint Conference on Artificial Intelligence, Pasadena, California, USA, July 11-17, pp. 904–910 (2009)Google Scholar
  20. 20.
    Shapiro, S., Lespérance, Y., Levesque, H.J.: The cognitive agents specification language and verification environment for multiagent systems. In: The First International Joint Conference on Autonomous Agents & Multiagent Systems, AAMAS 2002, Bologna, Italy, July 15-19, pp. 19–26. ACM Press (2002)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Slawomir Kmiec
    • 1
  • Yves Lespérance
    • 1
  1. 1.Dept. of Electrical Engineering and Computer ScienceYork UniversityTorontoCanada

Personalised recommendations