Skip to main content

Fabrication of ZnO Thin Film and Nanostructures for Optoelectronic Device Applications

  • Chapter

Abstract

Zinc oxide, as one of the promising semiconductor materials, has attracted considerable attention in optoelectronic applications due to its promising properties, including a wide band gap of 3.37 eV at room temperature, a large excitation binding energy of 60 meV, high chemical stability, and transparency. Recently, one-dimensional ZnO nanostructures have been extensive investigated due to their potential application for nanodevices such as solar cells, lighting, chemical sensors, and electrical devices and a variety of display units.

In this chapter, we introduce the most convenient method to deposit reproducible and homogeneous ZnO thin films over a large-area substrate at a lower deposition temperature. The critical parameters which will influence on the property of ZnO thin film are investigated. It is found that the gas ratio (Ar/O2) and deposition pressure significantly influence the structural and optical properties of ZnO film. In order to apply the ZnO nanostructures to the photovoltaic device, we also developed a novel method to fabricate well-aligned ZnO nanostructures from as-deposited ZnO thin film by thermal annealing method. The substrate dependence and growth mechanism are analyzed. Moreover, a novel mist chemical vapor deposition method is introduced for the first time to modify the obtained ZnO nanostructures. The morphology of ZnO nanostructures could be controlled well by adjusting the deposition time and carrier gas.

This work provides a much useful technique to fabricate high quality ZnO thin film and nanostructures which can be expected to apply in thin film transistor, sensor, dye-sensitized solar cell industries in the near future.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. G. Busch, Early history of the physics and chemistry of semiconductors-from doubts to fact in a hundred years. Eur. J. Phys. 10, 254–264 (1989)

    Article  Google Scholar 

  2. A.R. Hutson, Hall Effect studies of doped zinc oxide single crystals. Phys. Rev. 108, 222–230 (1957)

    Article  Google Scholar 

  3. R.A. Laudise, E.D. Kolb, A.J. Caporaso, Hydrothermal growth of large sound crystals of zinc oxide. J. Am. Ceram. Soc. 47, 9–12 (1964)

    Article  Google Scholar 

  4. P.R. Emtage, The physics of zinc oxide varistors. J. Appl. Phys. 48, 4372–4384 (1977)

    Article  Google Scholar 

  5. M. Inada, Crystal phases of nonohmic zinc oxide ceramics. Jpn J. Appl. Phys. 17, 1–10 (1978)

    Article  Google Scholar 

  6. S.K. Tiku, C.K. Lau, K.M. Lakin, Chemical vapor deposition of ZnO epitaxial films on sapphire. Appl. Phys. Lett. 35, 318–320 (1980)

    Article  Google Scholar 

  7. C.H. Lin, B.S. Chiou, C.H. Chang, J.D. Lin, Preparation and cathodoluminescence of ZnO phosphor. Mater. Chem. Phys. 77, 647–654 (2003)

    Article  Google Scholar 

  8. K. Vanheusden, C.H. Seager, W.L. Warren, D.R. Tallant, J.A. Voigt, Correlation between photoluminescence and oxygen vacancies in ZnO phosphors. Appl. Phys. Lett. 68, 403–405 (1996)

    Article  Google Scholar 

  9. Y. Hayashi, H. Narahara, T. Uchida, T. Noguchi, S. Ibuki, Photoluminescence of Eu-doped ZnO phosphors. Jpn J. Appl. Phys. 34, 1878–1882 (1995)

    Article  Google Scholar 

  10. Z.S. Wang, C.H. Huang, Y.Y. Huang, Y.J. Hou, P.H. Xie, B.W. Zhang, H.M. Cheng, A highly efficient solar cell made from a dye-modified ZnO-covered TiO2 nanoporous electrode. Chem. Mater. 13, 678–682 (2001)

    Article  Google Scholar 

  11. K. Keis, C. Bauer, G. Boschloo, A. Hagfeldt, K. Westermark, H. Rensmo, H. Siegbahn, Nanostructured ZnO electrodes for dye-sensitized solar cell applications. J. Photochem. Photobiol. A Chem. 148, 57–64 (2002)

    Article  Google Scholar 

  12. J. Katayama, K. Ito, M. Matsuoka, J. Tamaki, Performance of Cu2O/ZnO solar cell prepared by two-step electrodeposition. J. Appl. Electrochem. 34, 687–692 (2004)

    Article  Google Scholar 

  13. T. Minami, H. Nanto, S. Takata, Highly conductive and transparent aluminum doped zinc oxide thin films prepared by RF magnetron sputtering. Jpn J. Appl. Phys. 23, L280–L282 (1984)

    Article  Google Scholar 

  14. S.Y. Myong, S.J. Baik, C.H. Lee, W.Y. Cho, K.S. Lim, Extremely transparent and conductive ZnO:Al thin films prepared by photo-assisted metalorganic chemical vapor deposition (photo-MOCVD) using AlCl3(6H2O) as new doping material. Jpn J. Appl. Phys. 36, L1078–L1081 (1997)

    Article  Google Scholar 

  15. S.J. Baik, J.H. Jang, C.H. Lee, W.Y. Cho, K.S. Lim, Highly textured and conductive undoped ZnO film using hydrogen post-treatment. Appl. Phys. Lett. 70, 3516–3518 (1997)

    Article  Google Scholar 

  16. T. Minami, H. Nanto, S. Takata, Highly conductive and transparent ZnO thin films prepared by r.f. magnetron sputtering in an applied external d.c. magnetic field. Thin Solid Films 124, 43–47 (1985)

    Article  Google Scholar 

  17. D.K. Hwang, S.H. Kang, J.H. Lim, E.J. Yang, J.Y. Oh, p-ZnO/n-GaN heterostructure ZnO light-emitting diodes. Appl. Phys. Lett. 86, 222101–222101-3 (2005)

    Article  Google Scholar 

  18. J.H. Lim, C.K. Kang, K.K. Kim, I.K. Park, D.K. Hwang, S.J. Park, UV electroluminescence emission from ZnO light-emitting diodes grown by high-temperature radiofrequency sputtering. Adv. Mater. 18, 2720–2724 (2006)

    Article  Google Scholar 

  19. W.Z. Xu, Z.Z. Ye, Y.J. Zeng, L.P. Zhu, B.H. Zhao, L. Jiang, J.G. Lu, H.P. He, S.B. Zhang, ZnO light-emitting diode grown by plasma-assisted metal organic chemical vapor deposition. Appl. Phys. Lett. 88, 173506–173506-3 (2006)

    Article  Google Scholar 

  20. H. Seo, S. Aihara, T. Watabe, H. Ohtake, T. Sakai, M. Kubota, N. Egami, T. Hiramatsu, T. Matsuda, M. Furuta, T. Hirao, A 128×96 pixel stacked-type color image sensor: stack of individual blue-, green-, and red-sensitive organic photoconductive films integrated with a ZnO thin-film transistor readout circuit. Jpn J. Appl. Phys. 50, 024103–024103-6 (2001)

    Article  Google Scholar 

  21. M. Furuta, Y. Kamada, M. Kimura, T. Hiramatsu, T. Matsuda, H. Furuta, C. Li, S. Fujita, T. Hirao, Analysis of hump characteristics in thin-film transistors with ZnO channels deposited by sputtering at various oxygen partial pressures. IEEE Electron Dev. Lett. 31, 1257–1259 (2010)

    Google Scholar 

  22. M. Kimura, Y. Kamada, S. Fujita, T. Hiramatsu, T. Matsuda, M. Furuta, T. Hirao, Mechanism analysis of photoleakage current in ZnO thin-film transistors using device simulation. Appl. Phys. Lett. 97, 163503–163503-3 (2010)

    Article  Google Scholar 

  23. Y. Kamada, S. Fujita, T. Hiramatsu, T. Matsuda, H. Nitta, M. Furuta, T. Hirao, Photo-leakage current of zinc oxide thin-film transistors. Jpn J. Appl. Phys. 49, 03CB03–03CB03-5 (2010)

    Article  Google Scholar 

  24. M. Furuta, Y. Kamada, T. Hiramatsu, C. Li, M. Kimura, S. Fujita, T. Hirao, Positive bias instability of bottom-gate zinc oxide thin-film transistors with a SiOx/SiNx-stacked gate insulator. Jpn J. Appl. Phys. 50, 03CB09–03CB09-4 (2011)

    Article  Google Scholar 

  25. T. Matsuda, M. Furuta, T. Hiramatsu, H. Furuta, C. Li, T. Hirao, Thermal stability of ZnO thin film prepared by RF-magnetron sputtering evaluated by thermal desorption spectroscopy. Appl. Surf. Sci. 256, 6350–6353 (2010)

    Article  Google Scholar 

  26. M. Furuta, T. Hiramatsu, T. Matsuda, C. Li, H. Furuta, T. Hirao, Oxygen bombardment effects on average crystallite size of sputter-deposited ZnO films. J. Non-Cryst. Solids 354, 1926–1931 (2008)

    Article  Google Scholar 

  27. T. Hiramatsu, M. Furuta, H. Furuta, T. Matsuda, T. Hirao, Influence of thermal annealing on microstructures of zinc oxide films deposited by RF magnetron sputtering. Jpn J. Appl. Phys. 46, 3319–3323 (2007)

    Article  Google Scholar 

  28. P. Misra, P. Bhattacharya, K. Mallik, S. Rajagopalan, L.M. Kukreja, K.C. Rustagi, Variation of bandgap with oxygen ambient pressure in MgxZn1−xO thin films grown by pulsed laser deposition. Solid State Commun. 117, 673–677 (2001)

    Article  Google Scholar 

  29. D. Wang, T. Narusawa, T. Kawaharamura, M. Furuta, C. Li, Influence of sputtering pressure on band gap of Zn1−xMgxO thin films prepared by radio frequency magnetron sputtering. J. Vac. Sci. Technol. B 29, 051205–051205-4 (2011)

    Article  Google Scholar 

  30. V. Gupta, A. Mansingh, Influence of postdeposition annealing on the structural and optical properties of sputtered zinc oxide film. J. Appl. Phys. 80, 1063–1073 (1996)

    Article  Google Scholar 

  31. D. Singh, Y.P. Varshni, Debye temperatures for hexagonal crystals. Phys. Rev. B 24, 4340–4347 (1981)

    Article  Google Scholar 

  32. B.L. Zhu, X.Z. Zhao, F.H. Su, G.H. Li, X.G. Wu, J. Wu, R. Wu, Low temperature annealing effects on the structure and optical properties of ZnO films grown by pulsed laser deposition. Vacuum 84, 1280–1286 (2010)

    Article  Google Scholar 

  33. C.Y. Chen, M. Wang, J.Y. Li, N. Pootrakulchote, L. Alibabaei, C.H. Ngoc-le, Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells. ACS Nano 3, 3103–3109 (2009)

    Article  Google Scholar 

  34. Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, L. Han, Dye-sensitized solar cells with conversion efficiency of 11.1 %. Jpn J. Appl. Phys. 45, L638 (2006)

    Article  Google Scholar 

  35. J.Y. Park, Y.S. Yun, Y.S. Hong, H. Oh, J.-J. Kim, S.S. Kim, Synthesis and electrical properties of aligned ZnO nanocolumns. Compos. Part B Eng. 37, 408–412 (2006)

    Article  Google Scholar 

  36. W. Zeng, Y. Cao, Y. Bai, Y. Wang, Y. Shi, M. Zhang, Efficient dye-sensitized solar cells with an organic photosensitizer featuring orderly conjugated ethylenedioxythiophene and dithienosilole blocks. Chem. Mater. 22, 1915–1925 (2010)

    Article  Google Scholar 

  37. J. Huang, Z. Yin, Q. Zheng, Applications of ZnO in organic and hybrid solar cells. Energy Environ. Sci. 4, 3861–3877 (2011)

    Article  Google Scholar 

  38. M. Dhingra, S. Shrivastava, P. Senthil Kumar, S. Annapoorni, Polyaniline mediated enhancement in band gap emission of Zinc Oxide. Compos. Part B Eng. 45, 1515–1520 (2013)

    Article  Google Scholar 

  39. G.J. Exarhos, X.-D. Zhou, Discovery-based design of transparent conducting oxide films. Thin Solid Films 515, 7025–7052 (2007)

    Article  Google Scholar 

  40. E. Fortunato, D. Ginley, H. Hosono, D.C. Paine, Transparent conducting oxides for photovoltaics. MRS Bull. 32, 242–247 (2007)

    Article  Google Scholar 

  41. R. Chamberlin, J. Skarman, Chemically sprayed thin film photovoltaic converters. Solid State Electron. 9, 819–823 (1969)

    Article  Google Scholar 

  42. B. O’Regan, D.T. Schwartz, S.M. Zakeeruddin, M. Grätzel, Electrodeposited nanocomposite n-p heterojunctions for solid-state dye-sensitized photovoltaics. Adv. Mater. 12, 1263–1267 (2000)

    Article  Google Scholar 

  43. H. Zhang, D. Yang, X. Ma, Y. Ji, J. Xu, D. Que, Synthesis of flower-like ZnO nanostructures by an organic-free hydrothermal process. Nanotechnology 15, 622–628 (2004)

    Article  Google Scholar 

  44. Y. Dai, Y. Zhang, Z.L. Wang, The octa-twin tetraleg ZnO nanostructures. Solid State Commun. 126, 629–633 (2003)

    Article  Google Scholar 

  45. C. Li, T. Matsuda, T. Kawaharamura, H. Furuta, M. Furuta, T. Hiramatsu et al., Comparison of structural and photoluminescence properties of zinc oxide nanostructures influenced by gas ratio and substrate bias during radio frequency sputtering. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 28(2), C2B51 (2010)

    Article  Google Scholar 

  46. C. Li, T. Kawaharamura, T. Matsuda, H. Furuta, T. Hiramatsu, M. Furuta, Intense green cathodoluminescence from low-temperature-deposited ZnO film with fluted hexagonal cone nanostructures. Appl. Phys. Exp. 2, 091601 (2009)

    Article  Google Scholar 

  47. H. Sato, T. Minami, T. Miyata, S. Takata, M. Ishii, Transparent conducting ZnO thin films prepared on low temperature substrates by chemical vapour deposition using Zn (C5H7O2)2 Thin Solid Films 246, 65–70 (1994)

    Google Scholar 

  48. M. Joseph, H. Tabata, T. Kawai, p-type electrical conduction in ZnO thin films by Ga and N codoping. Jpn J. Appl. Phys. 38, L1205 (1999)

    Article  Google Scholar 

  49. C. Geoffroy, G. Campet, J. Portier, J. Salardenne, G. Couturier, M. Bourrel, Preparation and characterization of fluorinated indium tin oxide films prepared by rf sputtering. Thin Solid Films 202, 77–82 (1991)

    Article  Google Scholar 

  50. V. Vasu, A. Subrahmanyam, Reaction kinetics of the formation of indium tin oxide films grown by spray pyrolysis. Thin Solid Films 193, 696–703 (1990)

    Article  Google Scholar 

  51. H. Seo, S. Aihara, T. Watabe, H. Ohtake, T. Sakai, M. Kubota, A 128× 96 pixel stack-type color image sensor: stack of individual blue-, green-, and red-sensitive organic photoconductive films integrated with a ZnO thin film transistor readout circuit. Jpn J. Appl. Phys. 50, 4103 (2011)

    Article  Google Scholar 

  52. T. Hiramatsu, M. Furuta, H. Furuta, T. Matsuda, C. Li, T. Hirao, Effect of substrate bias on crystal structure and thermal stability of sputter-deposited ZnO films. J. Cryst. Growth 311, 282–285 (2009)

    Article  Google Scholar 

  53. L. Duan, B.X. Lin, R. Yao, Z.X. Fu, The properties of ZnO/SiC/Si heterostructure. Chinese J. Mater. Res. 20, 259–265 (2006)

    Google Scholar 

  54. W.Q. Peng, S.C. Qu, G.W. Cong, Z.G. Wang, Second harmonic generation in self-assembled ZnO microcrystallite thin films. Cryst. Growth Des. 6, 1518–1524 (2006)

    Article  Google Scholar 

  55. A.L. Pan, R.H. Yu, S.S. Xie, Z.B. Zhang, C.Q. Jin, B.S. Zou, Controllable growth and optical properties of large scale ZnO arrays. J. Cryst. Growth 15, 125–130 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaoyang Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Li, C., Li, X., Wang, D. (2015). Fabrication of ZnO Thin Film and Nanostructures for Optoelectronic Device Applications. In: Mele, P., Endo, T., Arisawa, S., Li, C., Tsuchiya, T. (eds) Oxide Thin Films, Multilayers, and Nanocomposites. Springer, Cham. https://doi.org/10.1007/978-3-319-14478-8_12

Download citation

Publish with us

Policies and ethics