Skip to main content

The Polarized Distribution of the Na+,K+-ATPase

  • Chapter
  • First Online:
Cell Polarity 1
  • 1341 Accesses

Abstract

The life of a cell depends on the perennial inflow of metabolites and outflow of catabolites, ultimately driven by membrane pumps or by the electrochemical potential gradients that these pumps generate. Metazoans have cells in which pumps have an additional function: they accumulate in a certain domain of the membrane to induce polarity. Surprisingly, the polarized distribution of Na+,K+-ATPase does not arise only from canonical signals or classical mechanisms but also from the peculiar affinities between its own subunits. For example, subunits α and β have an affinity for each other that binds them together right after synthesis, and they then migrate through the endoplasmic reticulum and the Golgi apparatus and are delivered to the plasma membrane. In keeping with this role of subunit affinities, we have shown that the polarized distribution of the whole enzyme at the plasma membrane facing the intercellular space arises from the very specific affinity of one β subunit for another. In addition to being distributed in a polarized manner, Na+,K+-ATPase participates in cell polarization by acting as a receptor for the ouabain hormone, thereby promoting ciliogenesis; obviously, the enzyme can act as a receptor because this is polarized toward the blood side where hormones come from. In this chapter, we review the polarized distribution of Na+,K+-ATPase and suggest that the very existence of higher metazoans depends on this polarized expression of pumps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adijanto J, Banzon T, Jalickee S et al (2009) CO2-induced ion and fluid transport in human retinal pigment epithelium. J Gen Physiol 133:603–622. doi:10.1085/jgp.200810169

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Aizman O, Aperia A (2003) Na, K-ATPase as a signal transducer. Ann N Y Acad Sci 986:489–496

    Article  CAS  PubMed  Google Scholar 

  • Antonicek H, Persohn E, Schachner M (1987) Biochemical and functional characterization of a novel neuron-glia adhesion molecule that is involved in neuronal migration. J Cell Biol 104:1587–1595

    Article  CAS  PubMed  Google Scholar 

  • Antonicek H, Schachner M (1988) The adhesion molecule on glia (AMOG) incorporated into lipid vesicles binds to subpopulations of neurons. J Neurosci 8:2961–2966

    CAS  PubMed  Google Scholar 

  • Aperia A (2007) New roles for an old enzyme: Na, K-ATPase emerges as an interesting drug target. J Intern Med 261:44–52. doi:10.1111/j.1365-2796.2006.01745.x

    Article  CAS  PubMed  Google Scholar 

  • Berridge MJ, Bootman MD, Roderick HL (2003) Calcium: calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–529. doi:10.1038/nrm1155

    Article  CAS  PubMed  Google Scholar 

  • Du Bois-Reymond E (1848) Untersuchungen Uber Thierische Elektricitat, 1st edn. G. Reimer, Berlin

    Google Scholar 

  • Bok D (1982) Autoradiographic studies on the polarity of plasma membrane receptors in retinal pigment epithelial cells. In: Hollyfield JG (ed) The structure of the eye. North Holland, Elsevier, pp 247–256

    Google Scholar 

  • Boulan ER, Sabatini DD (1978) Asymmetric budding of viruses in epithelial monolayers: a model system for study of epithelial polarity. Proc Natl Acad Sci U S A 75:5071–5075

    Article  PubMed Central  Google Scholar 

  • Brown PD, Davies SL, Speake T, Millar ID (2004) Molecular mechanisms of cerebrospinal fluid production. Neuroscience 129:957–970. doi:10.1016/j.neuroscience.2004.07.003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bryant DM, Mostov KE (2008) From cells to organs: building polarized tissue. Nat Rev Mol Cell Biol 9:887–901. doi:10.1038/nrm2523

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Burrow CR, Devuyst O, Li X et al (1999) Expression of the beta2-subunit and apical localization of Na+-K+-ATPase in metanephric kidney. Am J Physiol 277:F391–F403

    CAS  PubMed  Google Scholar 

  • Cai H, Wu L, Qu W et al (2008) Regulation of apical NHE3 trafficking by ouabain-induced activation of the basolateral Na+-K+-ATPase receptor complex. Am J Physiol Cell Physiol 294:C555–C563. doi:10.1152/ajpcell.00475.2007

    Article  CAS  PubMed  Google Scholar 

  • Caplan MJ, Anderson HC, Palade GE, Jamieson JD (1986) Intracellular sorting and polarized cell surface delivery of (Na+, K+)ATPase, an endogenous component of MDCK cell basolateral plasma membranes. Cell 46:623–631

    Article  CAS  PubMed  Google Scholar 

  • Castorino JJ, Deborde S, Deora A et al (2011) Basolateral sorting signals regulating tissue-specific polarity of heteromeric monocarboxylate transporters in epithelia. Traffic 12:483–498. doi:10.1111/j.1600-0854.2010.01155.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cereijido M, Contreras RG, Shoshani L, García-Villegas MR (2003) Membrane targeting. Prog Biophys Mol Biol 81:81–115

    Article  CAS  PubMed  Google Scholar 

  • Cereijido M, Robbins ES, Dolan WJ et al (1978) Polarized monolayers formed by epithelial cells on a permeable and translucent support. J Cell Biol 77:853–880

    Article  CAS  PubMed  Google Scholar 

  • Cereijido M, Rotunno CA (1970) Introduction to the study of biological membranes. Gordon and Breach, New York, NY

    Google Scholar 

  • Cereijido M, Rotunno CA (1971) Introduction to the study of biological membranes. Gordon and Breach, New York, NY

    Google Scholar 

  • Cereijido M, Shoshani L, Contreras RG (2000) Molecular physiology and pathophysiology of tight junctions. I. Biogenesis of tight junctions and epithelial polarity. Am J Physiol Gastrointest Liver Physiol 279:G477–G482

    CAS  PubMed  Google Scholar 

  • Cohen AR, Woods DF, Marfatia SM et al (1998) Human CASK/LIN-2 binds syndecan-2 and protein 4.1 and localizes to the basolateral membrane of epithelial cells. J Cell Biol 142:129–138

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Contreras RG, Lázaro A, Bolivar JJ et al (1995a) A novel type of cell-cell cooperation between epithelial cells. J Membr Biol 145:305–310

    CAS  PubMed  Google Scholar 

  • Contreras RG, Lázaro A, Mújica A et al (1995b) Ouabain resistance of the epithelial cell line (Ma104) is not due to lack of affinity of its pumps for the drug. J Membr Biol 145:295–300

    CAS  PubMed  Google Scholar 

  • Crane R, Miller D, Bihler I (1961) The restrictions on possible mechanisms of intestinal active transport of sugars. In: Kleinzeller A, Kotyk A (eds) Membrane transport and metabolism, 1st edn. Academic, London, pp 439–449

    Google Scholar 

  • Crane RK, Forstner G, Eichholz A (1965) Studies on the mechanism of the intestinal absorption of sugars X. An effect of Na+ concentration on the apparent michaelis constants for intestinal sugar transport, in vitro. Biochim Biophys Acta 109:467–477. doi:10.1016/0926-6585(65)90172-X

    Article  CAS  PubMed  Google Scholar 

  • Csaky TZ, Thale M (1960) Effect of ionic environment on intestinal sugar transport. J Physiol 151:59–65

    PubMed Central  CAS  PubMed  Google Scholar 

  • de Donder T, Van Rysselberghe P (1936) L’affinité, 1st edn. Gauthier-Villars & cie, Paris

    Google Scholar 

  • Duffield A, Caplan MJ, Muth TR (2008) Protein trafficking in polarized cells. Int Rev Cell Mol Biol 270:145–179. doi:10.1016/S1937-6448(08)01404-4

    Article  CAS  PubMed  Google Scholar 

  • Duffield A, Fölsch H, Mellman I, Caplan MJ (2004) Sorting of H, K-ATPase beta-subunit in MDCK and LLC-PK cells is independent of mu 1B adaptin expression. Traffic 5:449–461. doi:10.1111/j.1398-9219.2004.00192.x

    Article  CAS  PubMed  Google Scholar 

  • Dunbar LA, Aronson P, Caplan MJ (2000) A transmembrane segment determines the steady-state localization of an ion-transporting adenosine triphosphatase. J Cell Biol 148:769–778

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dunbar LA, Caplan MJ (2001) Ion pumps in polarized cells: sorting and regulation of the Na+, K+- and H+, K+-ATPases. J Biol Chem 276:29617–29620. doi:10.1074/jbc.R100023200

    Article  CAS  PubMed  Google Scholar 

  • Frambach DA, Misfeldt DS (1983) Furosemide-sensitive Cl transport in embryonic chicken retinal pigment epithelium. Am J Physiol 244:F679–F685

    CAS  PubMed  Google Scholar 

  • Galeotti G (1904) Über die electromotorichen Kräfte, welch an der Oberfläche tierischer membranen bei der Berührung mit verschiedenen Elektrolyten Zustande kommen. Zellforsch Phys Chem 49:542–562

    Google Scholar 

  • Gloor S, Antonicek H, Sweadner KJ et al (1990) The adhesion molecule on glia (AMOG) is a homologue of the beta subunit of the Na, K-ATPase. J Cell Biol 110:165–174

    Article  CAS  PubMed  Google Scholar 

  • Gottardi CJ, Caplan MJ (1993) An ion-transporting ATPase encodes multiple apical localization signals. J Cell Biol 121:283–293

    Article  CAS  PubMed  Google Scholar 

  • Gravotta D, Deora A, Perret E et al (2007) AP1B sorts basolateral proteins in recycling and biosynthetic routes of MDCK cells. Proc Natl Acad Sci U S A 104:1564–1569. doi:10.1073/pnas.0610700104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Griffiths G (2007) Cell evolution and the problem of membrane topology. Nat Rev Mol Cell Biol 8:1018. doi:10.1038/nrm2287

    Article  CAS  PubMed  Google Scholar 

  • Hamann S, Kiilgaard JF, la Cour M et al (2003) Cotransport of H+, lactate, and H2O in porcine retinal pigment epithelial cells. Exp Eye Res 76:493–504

    Article  CAS  PubMed  Google Scholar 

  • Hammerton RW, Krzeminski KA, Mays RW et al (1991) Mechanism for regulating cell surface distribution of Na+, K(+)-ATPase in polarized epithelial cells. Science 254:847–850

    Article  CAS  PubMed  Google Scholar 

  • Johanson CE, Stopa EG, McMillan PN (2011) The blood-cerebrospinal fluid barrier: structure and functional significance. Methods Mol Biol 686:101–131. doi:10.1007/978-1-60761-938-3_4

    Article  CAS  PubMed  Google Scholar 

  • Kedem O, Essig A (1965) Isotope flows and flux ratios in biological membranes. J Gen Physiol 48:1047–1070

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Koefoed-Johnsen V, Ussing HH (1958) The nature of the frog skin potential. Acta Physiol Scand 42:298–308

    Article  CAS  PubMed  Google Scholar 

  • Larre I, Lazaro A, Contreras RG, Balda MS, Matter K, Flores-Maldonado C, Ponce A, Flores-Benitez D, Rincon-Heredia R, Padilla-Benavides T, Castillo A, Shoshani L, Cereijido M (2010) Ouabain modulates epithelial cell tight junction. Proc Natl Acad Sci U S A 107(25):11387–11392

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Larre I, Castillo A, Flores-Maldonado C, Contreras RG, Galvan I, Muñoz-Estrada J, Cereijido M (2011) Ouabain modulates ciliogenesis in epithelial cells. Proc Natl Acad Sci U S A 108(51):20591–20596

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lian W-N, Wu T-W, Dao R-L et al (2006) Deglycosylation of Na+/K+-ATPase causes the basolateral protein to undergo apical targeting in polarized hepatic cells. J Cell Sci 119:11–22. doi:10.1242/jcs.02706

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Xie Z-J (2010) The sodium pump and cardiotonic steroids-induced signal transduction protein kinases and calcium-signaling microdomain in regulation of transporter trafficking. Biochim Biophys Acta 1802:1237–1245. doi:10.1016/j.bbadis.2010.01.013

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Yan Y, Liu L et al (2011) Impairment of Na/K-ATPase signaling in renal proximal tubule contributes to Dahl salt-sensitive hypertension. J Biol Chem 286:22806–22813. doi:10.1074/jbc.M111.246249

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Masuzawa T, Ohta T, Kawamura M, Nakahara N (1984) Immunohistochemical localization of Na+,K+-ATPase in the choroid plexus. Brain Res 302:357

    Article  CAS  PubMed  Google Scholar 

  • Mays RW, Siemers KA, Fritz BA et al (1995) Hierarchy of mechanisms involved in generating Na/K-ATPase polarity in MDCK epithelial cells. J Cell Biol 130:1105–1115

    Article  CAS  PubMed  Google Scholar 

  • Mellman I, Nelson WJ (2008) Coordinated protein sorting, targeting and distribution in polarized cells. Nat Rev Mol Cell Biol 9:833–845. doi:10.1038/nrm2525

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Morth JP, Pedersen BP, Toustrup-Jensen MS et al (2007) Crystal structure of the sodium-potassium pump. Nature 450:1043–1049. doi:10.1038/nature06419

    Article  CAS  PubMed  Google Scholar 

  • Muth TR, Gottardi CJ, Roush DL, Caplan MJ (1998) A basolateral sorting signal is encoded in the alpha-subunit of Na-K-ATPase. Am J Physiol 274:C688–C696

    CAS  PubMed  Google Scholar 

  • Ogawa H, Shinoda T, Cornelius F, Toyoshima C (2009) Crystal structure of the sodium-potassium pump (Na+, K+-ATPase) with bound potassium and ouabain. Proc Natl Acad Sci U S A 106:13742–13747. doi:10.1073/pnas.0907054106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Onsager L (1967) Thermodynamics and some molecular aspects of biology. In: Quarton GC, Melinchick T, Schmitt FO (eds) The neurosciences. Rockefeller University Press, New York, NY, p 75

    Google Scholar 

  • Padilla-Benavides T, Roldán ML et al (2010) The polarized distribution of Na+, K+-ATPase: role of the interaction between {beta} subunits. Mol Biol Cell 21:2217. doi:10.1091/mbc.E10-01-0081

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Paul S, Palladino M (2007) A pump-independent function of the Na, K-ATPase is required for epithelial junction function and tracheal tube-size control. Development 134:147

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Philp N, Shoshani L, Cereijido M, Rodriguez-Boulan E (2011) Epithelial domains. In: Nabi IR (ed) Cellular domains. John Wiley & Sons, Hoboken, NJ, pp 1–31

    Google Scholar 

  • Philp NJ, Yoon H, Grollman EF (1998) Monocarboxylate transporter MCT1 is located in the apical membrane and MCT3 in the basal membrane of rat RPE. Am J Physiol 274:R1824–R1828

    CAS  PubMed  Google Scholar 

  • Schultz SG, Curran PF (1970) Coupled transport of sodium and organic solutes. Physiol Rev 50:637–718

    CAS  PubMed  Google Scholar 

  • Shoshani L, Contreras RG, Roldán ML et al (2005) The polarized expression of Na+, K+-ATPase in epithelia depends on the association between beta-subunits located in neighboring cells. Mol Biol Cell 16:1071–1081. doi:10.1091/mbc.E04-03-0267

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Siegel GJ, Holm C, Schreiber JH et al (1984) Purification of mouse brain (Na+ + K+)-ATPase catalytic unit, characterization of antiserum, and immunocytochemical localization in cerebellum, choroid plexus, and kidney. J Histochem Cytochem 32:1309–1318

    Article  CAS  PubMed  Google Scholar 

  • Skou JC (1957) The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim Biophys Acta 23:394–401

    Article  CAS  PubMed  Google Scholar 

  • Strauss O (2005) The retinal pigment epithelium in visual function. Physiol Rev 85:845–881. doi:10.1152/physrev.00021.2004

    Article  CAS  PubMed  Google Scholar 

  • Vagin O, Turdikulova S, Sachs G (2005) Recombinant addition of N-glycosylation sites to the basolateral Na, K-ATPase beta1 subunit results in its clustering in caveolae and apical sorting in HGT-1 cells. J Biol Chem 280:43159–43167. doi:10.1074/jbc.M508262200

    Article  CAS  PubMed  Google Scholar 

  • Vagin O, Turdikulova S, Tokhtaeva E (2007) Polarized membrane distribution of potassium-dependent ion pumps in epithelial cells: different roles of the N-glycans of their beta subunits. Cell Biochem Biophys 47:376–391

    Article  CAS  PubMed  Google Scholar 

  • Wolburg H, Paulus W (2010) Choroid plexus: biology and pathology. Acta Neuropathol 119:75–88. doi:10.1007/s00401-009-0627-8

    Article  PubMed  Google Scholar 

  • Wright EM (1978) Transport processes in the formation of the cerebrospinal fluid. Rev Physiol Biochem Pharmacol 83:3–34

    CAS  PubMed  Google Scholar 

  • Xie Z (2006) Membrane transporters and signal transduction. Cell Mol Biol (Noisy-le-Grand) 52:1–2

    Google Scholar 

  • Zurzolo C, Rodríguez-Boulan E (1993) Delivery of Na+, K(+)-ATPase in polarized epithelial cells. Science 260:550–552, author reply 554–6

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by research grants from CONACYT (National Research Council of México) and Secretaría de Ciencia, Tecnología e Inovación del Distrito Federal (SECITIDF). I. Larre had a postdoctoral fellowship from SECITIDF. We wish to acknowledge the efficient technical assistance of A. Castillo, L. Hinojosa, M. L. Roldán and C. Flores-Maldonado and Miss E. del Oso, Y. de Lorenz, E. Estrada, E. Méndez, and Javier Soriano.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Cereijido .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cereijido, M., Contreras, R.G., Larre, M.I., Shoshani, L. (2015). The Polarized Distribution of the Na+,K+-ATPase. In: Ebnet, K. (eds) Cell Polarity 1. Springer, Cham. https://doi.org/10.1007/978-3-319-14463-4_8

Download citation

Publish with us

Policies and ethics