Skip to main content

Some Stability Loss and Wave Propagation Problems Regarding the Double-Walled Carbon Nanotube (DWCNT)

  • Chapter
  • First Online:
Dynamics of Pre-Strained Bi-Material Elastic Systems
  • 471 Accesses

Abstract

In the present chapter, according to papers by Akbarov (Int J Solid Struc 50(16/17):2584–2596, 2013b; Comput Mater Continua 33(1):63–85, 2013c) we will consider some stability loss and wave propagation problems regarding the double-walled carbon nanotube (DWCNT). Namely, we will consider the problem on the mircobuckling of DWCNT embedded in an elastic matrix and the problem on an axisymmetric longitudinal wave propagation in DWCNT. The DWCNT is modeled as concentrically-nested two circular hollow cylinders between which there is free space. It is assumed that on the inner surface of the outer tube (cylinder) and on the outer surface of the inner tube (cylinder) of the DWCNT full slipping conditions occur. At the same time, it is assumed that the difference between the radial displacements of the adjacent surfaces of the tubes resists with the van der Waals forces. On the interface between the matrix and DWCNT complete contact conditions are satisfied. Numerical results on the critical parameters and on the wave dispersion are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akbarov SD (2013a) Stability loss and buckling delamination: three-dimensional linearized approach for elastic and viscoelastic composites. Springer, Berlin

    Book  Google Scholar 

  • Akbarov SD (2013b) Microbuckling of a doublewalled carbon nanotube embedded in an elastic matrix. Int J Solid Struc 50(16/17):2584–2596

    Article  Google Scholar 

  • Akbarov SD (2013c) On axisymmetric longitudinal wave propagation in double-walled carbon nanotubes. CMC Comput Mater Continua 33(1):63–85

    Google Scholar 

  • Babich IYu (1973) On the stability loss of a fiber in a matrix under small deformations. Int Appl Mech 9:370–373

    Google Scholar 

  • Biot MA (1965) Mechanics of incremental deformations. Wiley, New York

    Google Scholar 

  • Charlier JC, Michenaud JP (1993) Energetics of multilayered carbon tubes. Phys Rev Lett 70:1858–1861

    Article  Google Scholar 

  • Duan HL, Wang J, Karihaloo BL (2009) Theory of elasticity at the nanoscale. Adv Appl Mech 42(1):1–68

    Article  Google Scholar 

  • Guz AN (1990) Mechanics of compressive failure of composite materials. Naukova Dumka, Kiev (in Russian)

    Google Scholar 

  • Guz AN (1999) Fundamentals of the three-dimensional theory of stability of deformable bodies. Springer, Berlin

    Book  MATH  Google Scholar 

  • Guz AN (2004) Elastic waves in bodies with initial (residual) stresses. A. S. K., Kiev (in Russian)

    Google Scholar 

  • Guz AN (2006) Three-dimensional theory of stability of a carbon nanotube in a matrix. Int Appl Mech 42:19–31

    Article  MathSciNet  Google Scholar 

  • Guz IA (2012) Continuum solid mechanics at nano-scale: how small can it go? J Nanomater Mol Nanotechnol 1:1

    Google Scholar 

  • Guz AN, Rushchidsky JJ (2003) Nanomaterials: on the mechanics of nanomaterials. Int Appl Mech 39:1271–1293

    Article  Google Scholar 

  • Guz AN, Rushchidsky JJ (2012) Short introduction to mechanics of nanocomposites. Scientific and Academic Publishing, Rosemead

    Google Scholar 

  • Guz AN, Rodger AA, Guz IA (2005) Developing of compressive failure theory for nanocomposites. Int Appl Mech 41(3):233–255

    Article  Google Scholar 

  • Harik VM (2001) Ranges of applicability for the continuum beam model in the mechanics of carbon nanotubes and nanorods. Solid State Commun 120:331–335

    Article  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  Google Scholar 

  • Jochum Ch, Grandidier JC (2004) Microbuckling elastic modeling approach of a single carbon fibre embedded in an epoxy matrix. Com Sci Techn 64:2441–2449

    Article  Google Scholar 

  • Kelly BT (1981) Physics of graphite. Applied Science Publishers, London

    Google Scholar 

  • Liew KM, He XQ, Wong CH (2004) On the study of elastic and plastic properties of multi-walled carbon nanotubes under axial tension using molecular dynamics simulation. Acta Mater 52:2521–2527

    Article  Google Scholar 

  • Lourie O, Cox DM, Wagner HD (1998) Buckling and collapse of embedded carbon nanotubes. Phys Rev Lett 81:1638–1641

    Article  Google Scholar 

  • Mahdavi MH, Jiang LY, Sun X (2011) Nonlinear vibration of a double-walled carbon nanotube embedded in a polymer matrix. Phys E 43:1813–1819

    Article  Google Scholar 

  • Murmu T, Pradhan SC (2009) Buckling analysis of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity and Timoshenko beam theory and using DQM. Phys E 41:1232–1239

    Article  Google Scholar 

  • Natsuki T, Ni QQ, Hayashi T, Endo M (2008) Wave propagation in double-walled carbon nanotubes conveying fluid. J Appl Phys 103:094312

    Article  Google Scholar 

  • Rose JL (2004) Ultrasonic waves in solids media. Cambridge University Press, Cambridge

    Google Scholar 

  • Ru CQ (2000) Column buckling of multiwalled carbon nanotubes with interlayer radial displacements. Phys Rev B 62:16962–16967

    Article  Google Scholar 

  • Ru CQ (2001) Axially compressed buckling of a double walled carbon nanotube embedded in an elastic medium. J Mech Phys Solids 49:1265–1279

    Article  MATH  Google Scholar 

  • Ruoff RS, Lorents DC (1995) Mechanical and thermal properties of carbon nanotubes. Carbon 33(7):925–930

    Article  Google Scholar 

  • Shen H-S (2004) Postbuckling prediction of double-walled carbon nanotubes under hydrostatic pressure. Int J Solid Struct 41:2643–2657

    Article  MATH  Google Scholar 

  • Thai H-T (2012) A nonlocal beam theory for bending, buckling and vibration of nanobeams. Int J Eng Sci 52:56–64

    Article  MathSciNet  Google Scholar 

  • Wang Q (2005) Wave propagation in carbon nanotubes via nonlocal continuum mechanics. J Appl Phys 98:124–301

    Google Scholar 

  • Wang Q, Varadan VK (2006) Vibration of carbon nanotubes studied using nonlocal continuum mechanics. Smart Mater Struct 15:659–666

    Article  Google Scholar 

  • Wang CM, Tan VBC, Zhang YY (2006) Timoshenko beam model for vibration analysis of multi-walled carbon nanotubes. J Sound Vibr 294:1060–1072

    Article  Google Scholar 

  • Wilson N, Kannangara K, Smith G, Simmons M, Raguse B (2002) Nanotechnology. Basic science and emerging technologies. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

  • Windle AH (2007) Two defining moments: a personal view by Prof Alan H. Windle. Compos Sci Technol 67:929–930

    Article  Google Scholar 

  • Xiao IR, Gama BA, Gillespie IW (2005) An analytical molecular structural mechanics model for the mechanical properties of carbon nanotubes. Int J Solid Struct 42:3075–3092

    Article  MATH  Google Scholar 

  • Young RJ, Kinloch IA, Gong L, Novoselov KS (2012) The mechanics of graphene nanocomposites: a review. Compos Sci Technol 72:1459–1476

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surkay D. Akbarov .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Akbarov, S.D. (2015). Some Stability Loss and Wave Propagation Problems Regarding the Double-Walled Carbon Nanotube (DWCNT). In: Dynamics of Pre-Strained Bi-Material Elastic Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-14460-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14460-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14459-7

  • Online ISBN: 978-3-319-14460-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics