Skip to main content

The Genetic Components Involved in Sensing Chilling Requirements in Apricot

  • Chapter
  • First Online:

Abstract

Most apricot (Prunus armeniaca L.) varieties are known for their high sensitivity to environmental conditions, particularly for exposure to chilling. Insufficient chilling will result in difficulties breaking dormancy, developing normal flowers, and producing high-quality fruit. Taking advantage of a unique collection of local and introduced apricot varieties, combined with the relatively hot Israeli winter, provided an opportunity to identify genetic components responsible for determining chilling requirements in apricot. The main QTL identified in an F1 population segregating for chilling requirements is located on linkage group 1 (Olukolu et al. 2009), the same as the evg phenotype that was mapped in peach (Prunus persica L.) and the site where six DAM genes were identified and characterized (Bielenberg et al. 2004; Bielenberg et al. 2008). In addition, a ParSOC1-like gene was mapped to linkage group 2 (LG2) and was colocalized with a minor QTL identified in the population studied (Olukolu et al. 2009; Trainin et al. 2013). ParSOC1 is expressed in a diurnal manner and reaches its peak toward the end of the night. A SSR located in the 5′ UTR of the gene revealed high polymorphism among different accessions in the apricot collection and was used to associate certain ParSOC1 alleles with chilling requirements. The data suggest that ParSOC1, or a gene in its close proximity, might be involved in determining chilling requirements in apricot. Two SOC1-like genes were also identified in the apple (Malus domestica Borkh.) genome. Like in peach and apricot, the apple genes also have an SSR (CT)n in a similar position and show high polymorphism in the Israeli apple collection. These results suggest that the presence of the SSR in SOC1-like genes preceded the split between Malus and Prunus in the course of Rosaceae family evolution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

DAM:

dormancy-associated MADS-box

QTL:

quantitative trait loci

SOC1:

Suppressor Of CONSTANS

LG:

linkage group

SSR:

single sequence repeat

GDR:

Genome Database for Rosaceae

References

  • Bielenberg DG, Wang Y, Fan S, Reighard GL, Scorza R, Abbott AG (2004) A deletion affecting several gene candidates is present in the evergrowing peach mutant. J Hered 95:436–444

    Article  CAS  PubMed  Google Scholar 

  • Bielenberg DG, Wang Y, Li Z, Zhebentyayeva T, Fan S, Reighard GL, Scorza R, Abbott AG (2008) Sequencing and annotation of the evergrowing locus in peach [prunus persica (L.) Batsch] reveals a cluster of six MADS-box transcription factors as candidate genes for regulation of terminal bud formation. Tree Genet Genomes 4(3):495–507

    Article  Google Scholar 

  • Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Claverie JM, Gascuel O (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36(Suppl 2):W465–W469

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dereeper A, Audic S, Claverie JM, Blanc G (2010) BLAST-EXPLORER helps you building datasets for phylogenetic analysis. BMC Evol Biol 10:8

    Article  PubMed Central  PubMed  Google Scholar 

  • Erez A, Couvillon GA (1986) A characterization of the influence of moderate temperatures on the rest completion in the peach. J Amer Soc Hort Sci 112:677–680

    Google Scholar 

  • Erez A, Lavee S (1971) The effect of climatic conditions on dormancy development of peach buds. I. Temperature. J Amer Soc Hort Sci 96:711–714

    Google Scholar 

  • Erez A, Couvillon GA, Hendershott CH (1979) Quantitative chilling enhancement and negation in peach buds by temperatures in a daily cycle. J Amer Soc Hort Sci 104:536–540

    Google Scholar 

  • Fan S, Bielenberg DG, Zhebentyayeva TN, Reighard GL, Okie WR, Holland D, Abbott AG. (2010) Mapping quantitative trait loci associated with chilling requirement, heat requirement and bloom date in peach (Prunus persica). New Phytol 185:917–930

    Article  PubMed  Google Scholar 

  • Jiménez S, Reighard GL, Bielenberg DG (2010a) Identification of genes associated with growth cessation and bud dormancy entrance using a dormancy-incapable tree mutant. BMC Plant Biol 10:25. doi:10.1186/1471–2229-10–25

    Article  PubMed Central  PubMed  Google Scholar 

  • Jiménez S, Reighard GL, Bielenberg DG (2010b) Gene expression of DAM5 and DAM6 is suppressed by chilling temperatures and inversely correlated with bud break rate. Plant Mol Biol (2010) 73:157–167 doi:10.1007/s11103–010-9608–5

    Article  PubMed  Google Scholar 

  • Johansen B, Pederson LB, Skipper M, Frederiksen S (2002) MADSbox gene evolution—structure and transcription patterns. Mol Phylogenet Evol 23:458–480

    Google Scholar 

  • Jung S, Ficklin S, Lee T Cheng CH, Blenda A, Zheng P, Yu J, Bombarely A, Cho I, Ru S, Evans K, Peace C, Abbott AG, Mueller LA, Olmstead MA, Main D (2013). The genome database for rosaceae (GDR): year 10 update. Nucl Acids Res. doi:10.1093/nar/gkt1012

    Google Scholar 

  • Lei HJ, Yuan HZ, Liu Y, Guo XW, Liao X, Liu LL, Wang Q, Li TH (2013) Identification and characterization of FaSOC1, a homolog of suppressor of overexpression of constans1 from strawberry. Gene 531:158–67. doi:10.1016/j.gene.2013.09.036

    Article  CAS  PubMed  Google Scholar 

  • Leida C, Conesa A, Llácer G, Badenes ML, Ríos G (2012a) Histone modifications and expression of DAM6 gene in peach are modulated during bud dormancy release in a cultivar-dependent manner. New Phytol 193:67–80. doi:10.1111/j.1469–8137.2011.03863.x

    Article  CAS  PubMed  Google Scholar 

  • Leida C, Conejero A, Arbona V, Gómez-Cadenas A, Llácer G, Badenes ML (2012b) Chilling-dependent release of seed and bud dormancy in peach associates to common changes in gene expression. PLoS One 7(5):e35777

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li Z, Reighard GL, Abbott AG, Bielenberg DG (2009) Dormancy- associated MADS genes from the EVG locus of peach [Prunus persica (L.) Batsch] have distinct seasonal and photoperiodic expression patterns. J Exp Bot 60:3521–3530

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu C, Chen H, Er HL, Soo HM, Kumar PP, Han JH, Liou YC, Yu H (2008) Direct interaction of AGL24 and SOC1 integrates flowering signals in Arabidopsis. Development 135:1481–1491

    Article  CAS  PubMed  Google Scholar 

  • Mouhu K, Kurokura T, Koskela EA, Albert VA, Elomaa P, Hytönen T (2013) The Fragaria vesca homolog of suppressor of overexpression of constans1 represses flowering and promotes vegetative growth. Plant Cell 25:3296–3310

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Olukolu BA, Trainin T, Fan S, Kole C, Bielenberg DG, Reighard GL, Abbott AG, Holland D (2009) Genetic linkage mapping for molecular dissection of chilling requirement and budbreak in apricot (Prunus armeniaca L). Genome 52:819–828

    Article  CAS  PubMed  Google Scholar 

  • Rios G, Leida C, Conejero A, Badenes ML (2014) Epigenetic regulation of bud dormancy events in perennial plants. Front Plant Sci 3:5:247

    Google Scholar 

  • Rodriguez A, Sherman WB, Scorza R, Wisniewski M, Okie WR (1994) ‘Evergreen’ peach, its inheritance and dormant behavior. J Am Soc Hort Sci 119(4):789–792

    Google Scholar 

  • Salathia N, Davis SJ, Lynn JR, Michaels SD, Amasino RM, Millar AJ (2006) FLOWERING LOCUS C- dependent and independent regulation of the circadian clock by the autonomous and vernalization pathways. BMC plant biol 6:10

    Article  PubMed Central  PubMed  Google Scholar 

  • Sasaki R, Yamane H, Ooka T, Jotatsu H, Kitamura Y, Akagi T, Tao R (2011) Functional and expressional analyses of PmDAM genes associated with endodormancy in Japanese apricot. Plant Physiol 157:485–497

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Trainin T, Bar-Ya’akov I, Holland D (2013) ParSOC1, a MADS-box gene closely related to Arabidopsis AGL20/SOC1, is expressed in apricot leaves in a diurnal manner and is linked with chilling requirements for dormancy break. Tree Genet Genomes 9:1–14

    Article  Google Scholar 

  • Yamane H, Ooka T, Jotatsu H, Hosaka Y, Sasaki R, Tao R (2011) Expressional regulation of PpDAM5 and PpDAM6, peach (Prunus persica) dormancy-associated MADS-box genes, by low temperature and dormancy-breaking reagent treatment. J Exp Bot 62:3481–3488

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Trainin, T., Bar-Ya’akov, I., Holland, D. (2015). The Genetic Components Involved in Sensing Chilling Requirements in Apricot. In: Anderson, J. (eds) Advances in Plant Dormancy. Springer, Cham. https://doi.org/10.1007/978-3-319-14451-1_9

Download citation

Publish with us

Policies and ethics